Liquid handling is a fundamental capability for many scientific experiments. Previously, we introduced the Surface Patterned Omniphobic Tiles (SPOTs) platform, which enables manipulation of hundreds to thousands of independent experiments without costly equipment or excessive consumable expenses. However, the SPOTs platform requires a custom coating formulation and lacks robustness.
View Article and Find Full Text PDFGram-negative bacteria have a cell envelope that comprises an outer membrane (OM), a peptidoglycan (PG) layer and an inner membrane (IM). The OM and PG are load-bearing, selectively permeable structures that are stabilized by cooperative interactions between IM and OM proteins. In Escherichia coli, Braun's lipoprotein (Lpp) forms the only covalent tether between the OM and PG and is crucial for cell envelope stability; however, most other Gram-negative bacteria lack Lpp so it has been assumed that alternative mechanisms of OM stabilization are present.
View Article and Find Full Text PDFPeptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya.
View Article and Find Full Text PDF, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including , which has a developmental cycle superficially similar to that of Here, we used a Δ mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria.
View Article and Find Full Text PDFThe Q fever agent is a Gram-negative bacterium that invades macrophages and replicates inside a specialized lysosomal vacuole. The pathogen employs a type 4B secretion system (T4BSS) to deliver effector proteins into the host cell that modify the containing vacuole (CCV) into a replication-permissive niche. Mature CCVs are massive degradative organelles that acquire lysosomal proteins.
View Article and Find Full Text PDFUnlabelled: Host cell-free (axenic) culture of Coxiella burnetii in acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required for C. burnetii growth.
View Article and Find Full Text PDFA hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability.
View Article and Find Full Text PDFNovel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this study, we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species of chlamydia and the intracellular bacterium Coxiella burnetii in Vero and HeLa cells but not in McCoy (murine) cells.
View Article and Find Full Text PDFSuccessful host cell colonization by the Q fever pathogen, Coxiella burnetii, requires translocation of effector proteins into the host cytosol by a Dot/Icm type 4B secretion system (T4BSS). In Legionella pneumophila, the two-component system (TCS) PmrAB regulates the Dot/Icm T4BSS and several additional physiological processes associated with pathogenesis. Because PmrA consensus regulatory elements are associated with some dot/icm and substrate genes, a similar role for PmrA in regulation of the C.
View Article and Find Full Text PDFJ Microbiol Methods
January 2014
Coxiella burnetii undergoes a biphasic developmental cycle within its host cell that generates morphologically and physiologically distinct large cell variants (LCV) and small cell variants (SCV). During the lag phase of the C. burnetii growth cycle, non-replicating SCV differentiate into replicating LCV that in turn differentiate back into SCV during stationary phase.
View Article and Find Full Text PDFBackground: Coxiella burnetii is a Gram-negative intracellular bacterial pathogen that replicates within a phagolysosome-like parasitophorous vacuole (PV) of macrophages. PV formation requires delivery of effector proteins directly into the host cell cytoplasm by a type IVB secretion system. However, additional secretion systems are likely responsible for modification of the PV lumen microenvironment that promote pathogen replication.
View Article and Find Full Text PDFBackground: Pre-genomic and post-genomic studies demonstrate that chlamydiae actively recombine in vitro and in vivo, although the molecular and cellular biology of this process is not well understood. In this study, we determined the genome sequence of twelve Chlamydia trachomatis recombinants that were generated in vitro under antibiotic selection. These strains were used to explore the process of recombination in Chlamydia spp.
View Article and Find Full Text PDFA novel and quantitative high-throughput screening approach was explored as a tool for the identification of novel compounds that inhibit chlamydial growth in mammalian cells. The assay is based on accumulation of a fluorescent marker by intracellular chlamydiae. Its utility was demonstrated by screening 42,000 chemically defined compounds against Chlamydia caviae GPIC.
View Article and Find Full Text PDFInfections by obligate intracellular bacterial pathogens result in significant morbidity and mortality worldwide. These bacteria include Chlamydia spp., which causes millions of cases of sexually transmitted disease and blinding trachoma annually, and members of the α-proteobacterial genera Anaplasma, Ehrlichia, Orientia, and Rickettsia, agents of serious human illnesses including epidemic typhus.
View Article and Find Full Text PDFThere are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance.
View Article and Find Full Text PDFIn a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P.
View Article and Find Full Text PDF