Background: Chronic graft-versus-host disease (cGVHD) is a significant cause of long-term morbidity and mortality in patients after allogeneic hematopoietic cell transplantation. Skin is the most commonly affected organ, and visual assessment of cGVHD can have low reliability. Crowdsourcing data from nonexpert participants has been used for numerous medical applications, including image labeling and segmentation tasks.
View Article and Find Full Text PDFLack of reliable measures of cutaneous chronic graft-versus-host disease (cGVHD) remains a significant challenge. Non-expert assistance in marking photographs of active disease could aid the development of automated segmentation algorithms, but validated metrics to evaluate training effects are lacking. We studied absolute and relative error of marked body surface area (BSA), redness, and the Dice index as potential metrics of non-expert improvement.
View Article and Find Full Text PDFCutaneous erythema is used in diagnosis and response assessment of cutaneous chronic graft-versus-host disease (cGVHD). The development of objective erythema evaluation methods remains a challenge. We used a pre-trained neural network to segment cGVHD erythema by detecting changes relative to a patient's registered baseline photo.
View Article and Find Full Text PDF