Significance: Assessing the nanostructure of polymer solutions and biofluids is broadly useful for understanding drug delivery and disease progression and for monitoring therapy.
Aim: Our objective is to quantify bronchial mucus solids concentration (wt. %) during hypertonic saline (HTS) treatment via nanostructurally constrained diffusion of gold nanorods (GNRs) monitored by polarization-sensitive optical coherence tomography (PS-OCT).
Significance: Imaging biofluid flow under physiologic conditions aids in understanding disease processes and health complications. We present a method employing a microparallel plate strain induction chamber (MPPSIC) amenable to optical coherence tomography to track depth-resolved lateral displacement in fluids in real time while under constant and sinusoidal shear.
Aim: Our objective is to track biofluid motion under shearing conditions found in the respiratory epithelium, first validating methods in Newtonian fluids and subsequently assessing the capability of motion-tracking in bronchial mucus.