Publications by authors named "Kelsey Hodge-Hanson"

The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E.

View Article and Find Full Text PDF

Efficient symbiotic colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation on the surface of the squid's light organ. Subsequently, the bacteria disperse from the biofilm via an unknown mechanism and enter through pores to reach the interior colonization sites. Here, we identify a homolog of Pseudomonas fluorescens LapG as a dispersal factor that promotes cleavage of a biofilm-promoting adhesin, LapV.

View Article and Find Full Text PDF

The Rid protein superfamily (YjgF/YER057c/UK114) is found in all domains of life. The archetypal protein, RidA from , is a deaminase that quenches the reactive metabolite 2-aminoacrylate (2AA). 2AA deaminase activity is conserved in RidA proteins from humans, plants, yeast, archaea, and bacteria.

View Article and Find Full Text PDF

is used as a model for a number of processes, including symbiosis, quorum sensing, bioluminescence, and biofilm formation. Many of these studies depend on generating deletion mutants and complementing them. Engineering such strains, however, is a time-consuming, multistep process that relies on cloning and subcloning.

View Article and Find Full Text PDF

The RidA protein (PF01042) from is a deaminase that quenches 2-aminoacrylate (2AA) and other reactive metabolites. In the absence of RidA, 2AA accumulates, damages cellular enzymes, and compromises the metabolic network. , RidA homologs from all domains of life deaminate 2AA, and RidA proteins from plants, bacteria, yeast, and humans complement the mutant phenotype of a mutant strain of In the present study, a methanogenic archaeon, S2, was used to probe alternative mechanisms to restore metabolic balance.

View Article and Find Full Text PDF

The Rid (YjgF/YER057c/UK114) protein family is a group of small, sequence diverse proteins that consists of eight subfamilies. The archetypal RidA subfamily is found in all domains, while the Rid1-7 subfamilies are present only in prokaryotes. Bacterial genomes often encode multiple members of the Rid superfamily.

View Article and Find Full Text PDF

The high prevalence of house dust mite (HDM) allergy is a growing health problem worldwide, and the characterization of clinically important HDM allergens is a prerequisite for the development of diagnostic and therapeutic strategies. Here, we report a novel HDM allergen that belongs structurally to the highly conserved Rid/YjgF/YER057c/UK114 family (Rid family) with imine deaminase activity. Isolated HDM cDNA, named der f 34, encodes 128 amino acids homologous to Rid-like proteins.

View Article and Find Full Text PDF

Background: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and β-alanine. The synthesis of β-alanine is catalyzed by L-aspartate-α-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD).

View Article and Find Full Text PDF

Background: It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm.

View Article and Find Full Text PDF