The field of phenomics is experiencing unprecedented advances thanks to the rapid growth of morphological quantification based on three-dimensional (3D) imaging, online data repositories, team-oriented collaborations, and open data-sharing policies. In line with these progressions, we present an extensive primate phenotypic dataset comprising >6,000 3D scans (media) representing skeletal morphologies of 386 individual specimens covering all hominoid genera (except humans) and other selected primates. The digitized specimens are housed in physical collections at the American Museum of Natural History, the National Museum of Natural History, the Royal Museum for Central Africa (Belgium), the Cleveland Museum of Natural History, and Stony Brook University.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
(~12 million years ago, northeastern Spain) is key to understanding the mosaic nature of hominid (great ape and human) evolution. Notably, its skeleton indicates that an orthograde (upright) body plan preceded suspensory adaptations in hominid evolution. However, there is ongoing debate about this species, partly because the sole known cranium, preserving a nearly complete face, suffers from taphonomic damage.
View Article and Find Full Text PDFUnderstanding the phylogenetic relationships among hominins and other hominoid species is critical to the study of human origins. However, phylogenetic inferences are dependent on both the character data and taxon sampling used. Previous studies of hominin phylogenetics have used Papio and Colobus as outgroups in their analyses; however, these extant monkeys possess many derived traits that may confound the polarities of morphological changes among living apes and hominins.
View Article and Find Full Text PDFDespite intensive study, many aspects of the evolutionary history of great apes and humans (Hominidae) are not well understood. In particular, the phylogenetic relationships of many fossil taxa remain poorly resolved. This study aims to provide an updated hypothesis of phylogenetic relationships for Middle-Late Miocene fossil apes, focusing on those taxa typically considered to be great apes.
View Article and Find Full Text PDFHumans diverged from apes (chimpanzees, specifically) toward the end of the Miocene ~9.3 million to 6.5 million years ago.
View Article and Find Full Text PDFThe fossil record of 'lesser apes' (i.e. hylobatids = gibbons and siamangs) is virtually non-existent before the latest Miocene of East Asia.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAfrican papionins are a highly successful subtribe of Old World monkeys with an extensive fossil record. On the basis of both molecular and morphological data, crown African papionins are divided into two clades: Cercocebus/Mandrillus and Papio/Lophocebus/Rungwecebus/Theropithecus (P/L/R/T), though phylogenetic relationships in the latter clade, among both fossil and extant taxa, remain difficult to resolve. While previous phylogenetic studies have focused on either molecular or morphological data, here African papionin molecular and morphological data were combined using both supermatrix and molecular backbone approaches.
View Article and Find Full Text PDFBaboons (Papio hamadryas) are among the most successful extant primates, with a minimum of six distinctive forms throughout Sub-Saharan Africa. However, their presence in the fossil record is unclear. Three early fossil taxa are generally recognized, all from South Africa: Papio izodi, Papio robinsoni and Papio angusticeps.
View Article and Find Full Text PDFThe evolutionary history of extant hominoids (humans and apes) remains poorly understood. The African fossil record during the crucial time period, the Miocene epoch, largely comprises isolated jaws and teeth, and little is known about ape cranial evolution. Here we report on the, to our knowledge, most complete fossil ape cranium yet described, recovered from the 13 million-year-old Middle Miocene site of Napudet, Kenya.
View Article and Find Full Text PDFThumb reduction is among the most important features distinguishing the African and Asian colobines from each other and from other Old World monkeys. In this study we demonstrate that the partial skeleton KNM-ER 4420 from Koobi Fora, Kenya, dated to 1.9 Ma and assigned to the Plio-Pleistocene colobine species Cercopithecoides williamsi, shows marked reduction of its first metacarpal relative to the medial metacarpals.
View Article and Find Full Text PDF