The perimenopausal transition at middle age is often associated with hot flashes and sleep disruptions, metabolic changes, and other symptoms. Whereas the mechanisms for these processes are incompletely understood, both aging (AG) and a loss of ovarian estrogens play contributing roles. Furthermore, the timing of when estradiol (E) treatment should commence and for how long are key clinical questions in the management of symptoms.
View Article and Find Full Text PDFThis study tested the effects of timing and duration of estradiol (E) treatment, factors that are clinically relevant to hormone replacement in perimenopausal women, on social behavior and expression of genes in brain regions that regulate these behaviors. Female rats were ovariectomized (OVX) at 1year of age, roughly equivalent to middle-age in women, and given E or vehicle for different durations (3 or 6months) and timing (immediately or after a 3-month delay) relative to OVX. Social and ultrasonic vocalization (USV) behaviors were assessed at the 3 and 6month timepoints, and the rats' brains were then used for gene expression profiling in hypothalamus (supraoptic nucleus, paraventricular nucleus), bed nucleus of the stria terminalis, medial amygdala, and prefrontal cortex using a 48-gene qPCR platform.
View Article and Find Full Text PDFThis study tested the effects of long-term estradiol (E) replacement on social behavior and gene expression in brain nuclei involved in the regulation of these social behaviors in adult female rats. We developed an ultrasonic vocalization (USV) test and a sociability test to examine communications, social interactions, and social preference, using young adult female cagemates. All rats were ovariectomized (OVX) and implanted with a Silastic capsule containing E or vehicle, and housed in same-treatment pairs for a 3-month period.
View Article and Find Full Text PDFThe pulsatile release of GnRH is crucial for normal reproductive physiology across the life cycle, a process that is regulated by hypothalamic neurotransmitters. GnRH terminals co-express the vesicular glutamate transporter 2 (vGluT2) as a marker of a glutamatergic phenotype. The current study sought to elucidate the relationship between glutamate and GnRH nerve terminals in the median eminence--the site of GnRH release into the portal capillary vasculature.
View Article and Find Full Text PDF