Fungi of the group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus are very close morphologically to the species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae.
View Article and Find Full Text PDFIn plants, miRNA production is orchestrated by a suite of proteins that control transcription of the pri-miRNA gene, post-transcriptional processing and nuclear export of the mature miRNA. Post-transcriptional processing of miRNAs is controlled by a pair of physically interacting proteins, hyponastic leaves 1 (HYL1) and Dicer-like 1 (DCL1). However, the evolutionary history and structural basis of the HYL1-DCL1 interaction is unknown.
View Article and Find Full Text PDFGenome Biol Evol
September 2020
Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral sequences.
View Article and Find Full Text PDFAncestral protein sequence reconstruction is a powerful technique for explicitly testing hypotheses about the evolution of molecular function, allowing researchers to meticulously dissect how historical changes in protein sequence impacted functional repertoire by altering the protein's 3D structure. These techniques have provided concrete, experimentally validated insights into ancient evolutionary processes and help illuminate the complex relationship between protein sequence, structure, and function. Inferring the protein family phylogenies on which ancestral sequence reconstruction depends and reconstructing the sequences, themselves, are amenable to high-throughput computational analysis.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are approximately 22 nucleotide (nt) long and play important roles in post-transcriptional regulation in both plants and animals. In animals, precursor (pre-) miRNAs are ∼70 nt hairpins produced by Drosha cleavage of long primary (pri-) miRNAs in the nucleus. Exportin-5 (XPO5) transports pre-miRNAs into the cytoplasm for Dicer processing.
View Article and Find Full Text PDF