Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. To clarify the potential for an anti-G mAb, 131-2G which has both anti-viral and anti-inflammatory effects, to effectively treat RSV disease, we determined the kinetics of its effect compared to the effect of the anti-F mAb, 143-6C on disease in mice. Treatment administered three days after RSV rA2-line19F (r19F) infection showed 131-2G decreased breathing effort, pulmonary mucin levels, weight loss, and pulmonary inflammation earlier and more effectively than treatment with mAb 143-6C.
View Article and Find Full Text PDFUnlabelled: Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. In the present study, we investigated the effect of prophylactic treatment with the intact and F(ab')2 forms of an anti-G protein monoclonal antibody (MAb), 131-2G, on the humoral and cellular adaptive immune responses to RSV rA2-line19F (r19F) challenge in BALB/c mice. The F(ab')2 form of 131-2G does not decrease virus replication, but intact 131-2G does.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children and causes disease in the elderly and persons with compromised cardiac, pulmonary, or immune systems. Despite the high morbidity rates of RSV infection, no highly effective treatment or vaccine is yet available. The RSV G protein is an important contributor to the disease process.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model.
View Article and Find Full Text PDFHuman rhinovirus (HRV) infections are associated with the common cold, occasionally with more serious lower respiratory tract illnesses, and frequently with asthma exacerbations. The clinical features of HRV infection and its association with asthma exacerbation suggest that some HRV disease results from virus-induced host immune responses to infection. To study the HRV-infection-induced host responses and the contribution of these responses to disease, we have developed an in vitro model of HRV infection of human airway epithelial cells (Calu-3 cells) and subsequent exposure of human peripheral blood mononuclear cells (PBMCs) to these infected cells in a two-chamber trans-well tissue culture system.
View Article and Find Full Text PDFThe green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes.
View Article and Find Full Text PDF