Publications by authors named "Kelsen S"

Background: Drug seeking behavior occurs in response to environmental contexts and drug-associated cues. The presence of these pervasive stimuli impedes abstinence success. β-adrenergic receptors (β-ARs) have a long-standing historical implication in driving processes associated with contextual memories, including drug-associated memories in substance use disorders.

View Article and Find Full Text PDF

Background: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression.

Methods: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks.

View Article and Find Full Text PDF

Background: The longitudinal response to the COVID-19 vaccines among patients on hemodialysis with and without prior SARS-CoV-2 infection has not been well characterized.

Methods: To guide vaccination strategies in patients on hemodialysis, it is critical to characterize the longevity and efficacy of the vaccine; therefore, we conducted a prospective single-center monthly antibody surveillance study between March 2021 and March 2022 to investigate the dynamic humoral response to a series of COVID-19 mRNA vaccines in patients on hemodialysis with and without prior SARS-CoV-2 infection. Monthly quantitative antibody testing was performed using the Beckman Coulter Access SARS-CoV-2 IgG Antibody Test©, which detects IgG antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

BACKGROUNDMost individuals with prior COVID-19 disease manifest long-term protective immune responses against reinfection. Accordingly, we tested the hypothesis that humoral immune and reactogenicity responses to a SARS-CoV-2 mRNA vaccine differ in individuals with and without prior COVID-19 disease.METHODSHealth care workers (n = 61) with (n = 30) and without (n = 31) prior COVID-19 disease received two 30 μg doses of Pfizer BNT162b2 vaccine 3 weeks apart.

View Article and Find Full Text PDF

Background: The IL-33/ST2 pathway is linked with asthma susceptibility. Inhaled allergens, pollutants, and respiratory viruses, which trigger asthma exacerbations, induce release of IL-33, an epithelial-derived "alarmin." Astegolimab, a human IgG mAb, selectively inhibits the IL-33 receptor, ST2.

View Article and Find Full Text PDF

Background: Airway basal cells are specialised stem cells and regenerate airway epithelium. Airway basal cells isolated from patients with COPD regenerate airway epithelium with an abnormal phenotype. We performed gene expression analysis to gain insights into the defective regenerative programme in COPD basal cells.

View Article and Find Full Text PDF

The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells.

View Article and Find Full Text PDF

Emphysema is characterized by alveolar wall destruction induced mainly by cigarette smoke. Oxidative damage of DNA may contribute to the pathophysiology of this disease. We studied the impairment of the non-homologous end joining (NHEJ) repair pathway and DNA damage in alveolar type II (ATII) cells and emphysema development.

View Article and Find Full Text PDF

Pulmonary emphysema is characterized by alveolar wall destruction, and cigarette smoking is the main risk factor in this disease development. S100A8 is a member of the S100 protein family, with an oxidative stress-related and antiinflammatory role. The mechanisms of human alveolar type II (ATII) cell injury contributing to emphysema pathophysiology are not completely understood.

View Article and Find Full Text PDF

Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage.

View Article and Find Full Text PDF

Background: Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The ADEPT study examined patients with varying severity of asthma and healthy individuals to understand type 2 inflammation through airway mucosal gene expression driven by IL-13.
  • The researchers identified type 2 inflammation status using markers like CCL26, periostin, and a multi-gene signature, which helped differentiate between type 2-high and type 2-low asthma groups.
  • High levels of CCL26 were strongly associated with specific clinical biomarkers, providing an effective method for classifying asthma severity and type 2 inflammation in patients.*
View Article and Find Full Text PDF

Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the "unfolded protein response" (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation.

View Article and Find Full Text PDF

Background: Asthma is a biologically heterogeneous disease and development of novel therapeutics requires understanding of pathophysiologic phenotypes. There is uncertainty regarding the stability of clinical characteristics and biomarkers in asthma over time. This report presents the longitudinal stability over 12 months of clinical characteristics and clinically accessible biomarkers from ADEPT.

View Article and Find Full Text PDF

Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation.

View Article and Find Full Text PDF

Background: Quilizumab, a humanized IgG1 monoclonal antibody, targets the M1-prime segment of membrane-expressed IgE, leading to depletion of IgE-switched and memory B cells. In patients with mild asthma, quilizumab reduced serum IgE and attenuated the early and late asthmatic reaction following whole lung allergen challenge. This study evaluated the efficacy and safety of quilizumab in adults with allergic asthma, inadequately controlled despite high-dose inhaled corticosteroids (ICS) and a second controller.

View Article and Find Full Text PDF

Background: Asthma is a heterogeneous disease and development of novel therapeutics requires an understanding of pathophysiologic phenotypes. The purpose of the ADEPT study was to correlate clinical features and biomarkers with molecular characteristics, by profiling asthma (NCT01274507). This report presents for the first time the study design, and characteristics of the recruited subjects.

View Article and Find Full Text PDF

Background: Goblet cell hyperplasia is a classic but variable pathologic finding in COPD. Current literature shows that smoking is a risk factor for chronic bronchitis but the relationship of these clinical features to the presence and magnitude of large airway goblet cell hyperplasia has not been well described. We hypothesized that current smokers and chronic bronchitics would have more goblet cells than nonsmokers or those without chronic bronchitis (CB), independent of airflow obstruction.

View Article and Find Full Text PDF

The search for COPD biomarkers has largely employed a targeted approach that focuses on plasma proteins involved in the systemic inflammatory response and in lung injury and repair. This proof of concept study was designed to test the idea that an open, unbiased, in-depth proteomics approach could identify novel, low abundance plasma proteins i.e.

View Article and Find Full Text PDF

Background: Among the Hispanic community, Puerto Ricans have the highest prevalence of asthma and manifest the worst outcomes. The expected growth of the Hispanic population in the USA in the next several decades make elimination of disparate care in Puerto Rican asthmatics a matter of national importance. The purpose of this review of the literature (ROL) is to examine a variety of health system, genetic and cultural barriers in the Puerto Rican community which have created disparities in asthma care and outcomes among adult and pediatric Hispanic populations.

View Article and Find Full Text PDF

Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions, and 480 LC-MS/MS runs delivered >250 GB of data in 2 months.

View Article and Find Full Text PDF

Rationale: Shifts in the gene expression of nuclear protein in chronic obstructive pulmonary disease (COPD), a progressive disease that is characterized by extensive lung inflammation and apoptosis, are common; however, the extent of the elevation of the core histones, which are the major components of nuclear proteins and their consequences in COPD, has not been characterized, which is important because extracellular histones are cytotoxic to endothelial and airway epithelial cells.

Objectives: To investigate the role of extracellular histones in COPD disease progression.

Methods: We analyzed the nuclear lung proteomes of ex-smokers with and without the disease.

View Article and Find Full Text PDF