Publications by authors named "Kelong Ai"

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy.

View Article and Find Full Text PDF

Acute kidney injury (AKI) manifests a hallmark pathological feature of extensive and severe DNA damage in renal tubules, primarily induced by the excessive of toxic reactive oxygen species (ROS) from the mitochondrial electron transport chain. The kidney's complex intricate physiological architecture and the heterogeneous intracellular environment pose significant challenges for effective sequential and high-resolution drug delivery-an urgent issue that remains unresolved. To address this, a hierarchical-targeting antioxidant nanodrug has been developed with a folic acid moiety (HAND) designed for high-resolution drug delivery in AKI treatment.

View Article and Find Full Text PDF

Revascularization is crucial for treating myocardial infarction (MI). Nitric oxide (NO), at an appropriate concentration, is recognized as an ideal and potent pro-angiogenic factor. However, the application of NO in the treatment of MI is limited.

View Article and Find Full Text PDF

Oxidative stress, predominantly from neuronal mitochondrial damage and the resultant cytokine storm, is central to cerebral ischemia-reperfusion injury (CIRI). However, delivering drugs to neuronal mitochondria remains challenging due to the blood-brain barrier (BBB), which impedes drug entry into affected brain tissues. This study introduces an innovative tannic acid (TA) and melanin-modified heteropolyacid nanomedicine (MHT), which highly specifically eliminates the neuronal mitochondrial reactive oxygen radicals burst to efficiently reduce neuronal mitochondrial damage through a strategically designed sequential targeting strategy from affected brain tissue to neuronal mitochondria.

View Article and Find Full Text PDF

With the rapid advancements in biomedicine, the use of clinical drugs has surged sharply. However, potential hepatotoxicity limits drug exploitation and widespread usage, posing serious threats to patient health. Hepatotoxic drugs disrupt liver enzyme levels and cause refractory pathological damage, creating a challenge in the application of diverse first-line drugs.

View Article and Find Full Text PDF

Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM.

View Article and Find Full Text PDF

Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases.

View Article and Find Full Text PDF

Objectives: Knee synovitis is a highly prevalent and potentially curable condition for knee pain; however, its pathogenesis remains unclear. We sought to assess the associations of the gut fungal microbiota and the fungi-bacteria correlation network with knee synovitis.

Methods: Participants were derived from a community-based cross-sectional study.

View Article and Find Full Text PDF

Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA.

View Article and Find Full Text PDF

Background: Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear.

View Article and Find Full Text PDF

Promoting innate immunity through pyroptosis induction or the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway activation has emerged as a potent approach to counteract the immunosuppressive tumor microenvironment and elicit systemic antitumor immunity. However, current pyroptosis inducers and STING agonists often suffer from limitations including instability, unpredictable side effects, or inadequate intracellular expression of gasdermin and STING. Here, a tumor-specific nanotheranostic platform that combines photodynamic therapy (PDT) with epigenetic therapy to simultaneously activate pyroptosis and the cGAS-STING pathway in a light-controlled manner is constructed.

View Article and Find Full Text PDF

The increased incidence of inflammatory bowel disease (IBD) has seriously affected the life quality of patients. IBD develops due to excessive intestinal epithelial cell (IEC) apoptosis, disrupting the gut barrier, colonizing harmful bacteria, and initiating persistent inflammation. The current therapeutic approaches that reduce inflammation are limited.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI.

View Article and Find Full Text PDF

No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed "NM@Lip") for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints.

View Article and Find Full Text PDF

Preventing islet β-cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self-care, but drugs focused on reducing islets β-cell death are lacking. Given that β-cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in β-cells is a highly promising therapeutic strategy.

View Article and Find Full Text PDF

The fast conversion of hydrogen peroxide (H O ) into reactive oxygen species (ROS) at tumor sites is a promising anticancer strategy by manipulating nanomedicines with near-infrared light in the second region (NIR-II). However, this strategy is greatly compromised by the powerful antioxidant capacity of tumors and the limited ROS generation rate of nanomedicines. This dilemma mainly stems from the lack of an effective synthesis method to support high-density copper-based nanocatalysts on the surface of photothermal nanomaterials.

View Article and Find Full Text PDF

Non-invasive localization of lesions and specific targeted therapy are still the main challenges for inflammatory bowel disease (IBD). Ta, as a medical metal element, has been widely used in the treatment of different diseases because of its excellent physicochemical properties but is still far from being explored in IBD. Here, Ta C modified with chondroitin sulfate (CS) (TACS) is evaluated as a highly targeted therapy nanomedicine for IBD.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a disease of pulmonary artery stenosis and blockage caused by abnormal pulmonary artery smooth muscle cells (PASMCs), with high morbidity and mortality. High levels of reactive oxygen species (ROS) in pulmonary arteries play a crucial role in inducing phenotypic switch and abnormal proliferation of PASMCs. However, antioxidants are rarely approved for the treatment of PH because of a lack of targeting and low bioavailability.

View Article and Find Full Text PDF

Acute kidney injury has always been considered a sword of Damocles over hospitalized patients and has received increasing attention due to its high morbidity, elevated mortality, and poor prognosis. Hence, AKI has a serious detrimental impact not only on the patients, but also on the whole society and the associated health insurance systems. Redox imbalance caused by bursts of reactive oxygen species at the renal tubules is the key cause of the structural and functional impairment of the kidney during AKI.

View Article and Find Full Text PDF

Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD.

View Article and Find Full Text PDF

Myocardial infarction (MI) is the leading cause of death worldwide and can lead to the loss of cardiac function and heart failure. Reactive oxygen species (ROS) play a key role in the pathological progression of MI. The levels and effects of ROS are significantly different in three unique pathological stages of MI, and most antioxidants cannot make corresponding adjustments to eliminate ROS, which leads to a great compromise to treat MI with antioxidants.

View Article and Find Full Text PDF