While much about the fundamental mechanisms behind the initiation and progression of Type B aortic dissection (TBAD) is still unknown, predictive models based on patient-specific fluid-structure interaction (FSI) simulations can help in risk stratification and optimal clinical decision-making. Aiming at the development of personalized treatment, FSI models can be leveraged to investigate the interplay between complex aortic flow patterns and anatomical features, while considering the deformation of the arterial wall and the dissection flap. In this study, the hemodynamics of false lumen thrombosis, a large fenestration, and the orbital orientation of the false lumen is studied through image-based FSI simulations on three TBAD patient-specific geometries.
View Article and Find Full Text PDFWhile much about the fundamental mechanisms behind the initiation and progression of Type B aortic dissection (TBAD) is still unknown, predictive models based on patient-specific computational fluid dynamics (CFD) can help in risk stratification and optimal clinical decision-making. Aiming at the development of personalized treatment, CFD simulations can be leveraged to investigate the interplay between complex aortic flow patterns and anatomical features. In this study, the hemodynamics of false lumen thrombosis, a large fenestration, and the orbital orientation of the false lumen is studied through image-based CFD simulations on three TBAD patient-specific geometries.
View Article and Find Full Text PDF[structure: see text]. A novel class of nonbiaryl atropisomeric P,O-ligands possessing an N,N-dialkyl-1-naphthamide skeleton has been synthesized via an efficient chemical resolution process. It represents the first example of axially chiral P,O-ligands devoid of central chirality.
View Article and Find Full Text PDF