Publications by authors named "Kelly Wiltberger"

The N-mAb case study was produced by the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) to support teaching and learning for both industry and to accelerate adoption of advanced manufacturing process technologies such as integrated continuous bioprocesses (ICB) for mAbs. Similar to the A-mAb case study, N-mAb presents the evolution of an integrated control strategy, from early clinical through process validation and commercial manufacturing with a focus on elements that are unique to integrated continuous bioprocesses. This publication presents a summary of the process design and characterization chapters to allow a greater focus on the unique elements relevant to that phase of development.

View Article and Find Full Text PDF

Raman spectroscopy offers an attractive platform for real-time monitoring and control of metabolites and feeds in cell culture processes, including mammalian cell culture for biopharmaceutical production. However, specific cell culture processes may generate substantial concentrations of chemical species and byproducts with high levels of autofluorescence when excited with the standard 785 nm wavelength. Shifting excitation further toward the near-infrared allows reduction or elimination of process autofluorescence.

View Article and Find Full Text PDF

Accumulation of lactate in mammalian cell culture often negatively impacts culture performance, impeding production of therapeutic proteins. Many efforts have been made to limit the accumulation of lactate in cell culture. Here, we describe a closed loop control scheme based on online spectroscopic measurements of glucose and lactate concentrations.

View Article and Find Full Text PDF

Variability in poloxamer 188 (P188) raw material, which is routinely used in cell culture media to protect cells from hydrodynamic forces, plays an important role in the process performance. Even though tremendous efforts have been spent to understand the mechanism of poloxamer's protection, the root cause for lot-to-lot variation was not clear. A recent study reported that the low performance was not due to toxicity but inefficiency to protect cells (Peng et al.

View Article and Find Full Text PDF

Mitigating risks to biotherapeutic protein production processes and products has driven the development of targeted process analytical technology (PAT); however implementing PAT during development without significantly increasing program timelines can be difficult. The development of a monoclonal antibody expressed in a Chinese hamster ovary (CHO) cell line via fed-batch processing presented an opportunity to demonstrate capabilities of altering percent glycated protein product. Glycation is caused by pseudo-first order, non-enzymatic reaction of a reducing sugar with an amino group.

View Article and Find Full Text PDF

Multi-component, multi-scale Raman spectroscopy modeling results from a monoclonal antibody producing CHO cell culture process including data from two development scales (3 L, 200 L) and a clinical manufacturing scale environment (2,000 L) are presented. Multivariate analysis principles are a critical component to partial least squares (PLS) modeling but can quickly turn into an overly iterative process, thus a simplified protocol is proposed for addressing necessary steps including spectral preprocessing, spectral region selection, and outlier removal to create models exclusively from cell culture process data without the inclusion of spectral data from chemically defined nutrient solutions or targeted component spiking studies. An array of single-scale and combination-scale modeling iterations were generated to evaluate technology capabilities and model scalability.

View Article and Find Full Text PDF

The characterization of cell viability is a challenging task in applied biotechnology, as no clear definition of cell death exists. Cell death is accompanied with a change in the electrical properties of the membrane as well as the cell interior. Therefore, changes in the physiology of cells can be characterized by monitoring of their dielectric properties.

View Article and Find Full Text PDF

Shear protectants such as poloxamer 188 play a critical role in protecting cells during cell culture bioprocessing. Lot-to-lot variation of poloxamer 188 was experienced during a routine technology transfer across sites of similar scale and equipment. Cell culture medium containing a specific poloxamer 188 lot resulted in an unusual drop in cell growth, viability, and titer during manufacturing runs.

View Article and Find Full Text PDF

According to recent experimental studies on sparged bioreactors, significant cell damage may occur at the gas inlet region near the sparger. Although shear stress was proposed to be one of the potential causes for cell damage, detailed hydrodynamic studies at the gas inlet region of gas–liquid bioreactors have not been performed to date. In this work, a second-order moment (SOM) bubble–liquid two-phase turbulent model based on the two-fluid continuum approach is used to investigate the gas–liquid hydrodynamics in the bubble column reactor and their potential impacts on cell viability, especially at the gas inlet region.

View Article and Find Full Text PDF

The adoption of disposable bioreactor technology as an alternate to traditional nondisposable technology is gaining momentum in the biotechnology industry. Evaluation of current disposable bioreactors systems to sustain high intensity fed-batch mammalian cell culture processes needs to be explored. In this study, an assessment was performed comparing single-use bioreactors (SUBs) systems of 50-, 250-, and 1,000-L operating scales with traditional stainless steel (SS) and glass vessels using four distinct mammalian cell culture processes.

View Article and Find Full Text PDF