Inactivation of eukaryotic 2-Cys peroxiredoxins (Prxs) by hyperoxidation has been proposed to promote accumulation of hydrogen peroxide (H2O2) for redox-dependent signaling events. We examined the oxidation and oligomeric states of PrxI and -II in epithelial cells during mitogenic signaling and in response to fluxes of H2O2. During normal mitogenic signaling, hyperoxidation of PrxI and -II was not detected.
View Article and Find Full Text PDFNADPH oxidases produce reactive oxygen species (ROS) that serve as co-stimulatory signals for cell proliferation. In mouse lung epithelial cells that express Nox1, Nox2, Nox4, p22(phox), p47(phox), p67(phox), and Noxo1, overexpression of Nox1 delayed cell cycle withdrawal by maintaining AP-1-dependent expression of cyclin D1 in low serum conditions. In cycling cells, the effects of Nox1 were dose dependent: levels of Nox1 that induced 3- to 10-fold increases in ROS promoted phosphorylation of ERK1/2 and expression of cyclin D1, whereas expression of Nox1 with Noxo1 and Noxa1 (or expression of Nox4 alone) that induced substantial increases in intracellular ROS inhibited cyclin D1 and proliferation.
View Article and Find Full Text PDF