Background: Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons.
View Article and Find Full Text PDFA small number (<2%) of mammalian retinal ganglion cells express the photopigment melanopsin and are intrinsically photosensitive (ipRGCs). Light depolarizes ipRGCs and increases intracellular calcium levels ([Ca2+]i) but the signaling cascades underlying these responses have yet to be elucidated. To facilitate physiological studies on these rare photoreceptors, highly enriched ipRGC cultures from neonatal rats were generated using anti-melanopsin-mediated plate adhesion (immunopanning).
View Article and Find Full Text PDFIn mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl(-) conductance (I(Cl,swell)), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the I(Cl,swell) following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl(-) current that is inhibited by phorbol-12-dibutyrate and niflumic acid.
View Article and Find Full Text PDF