Publications by authors named "Kelly Shepardson"

Background: Early reports showed that patients with COVID-19 had recrudescence of previously resolved coccidioidomycosis (Valley fever, VF), and there were indications that coinfection had more severe outcomes. We therefore investigated serial infection of Coccidioides posadasii and SARS-CoV-2 in a K18-hACE2 mouse model to assess disease outcomes.

Methods: In our model, we challenged K18-hACE2 mice sequentially with a sub-lethal dose of SARS-CoV-2 and 24 hours later with low virulence strain of Coccidioides posadasii, and vice versa, compared to mice that only received a single infection challenge.

View Article and Find Full Text PDF

The increased incidence of invasive pulmonary aspergillosis, caused by Aspergillus fumigatus, occurring in patients infected with severe influenza or SARS-CoV-2, suggests that antiviral immune responses create an environment permissive to fungal infection. Our recent evidence suggests that absence of the type I IFN receptor 2 subunit (IFNAR2) of the heterodimeric IFNAR1/2 receptor is allowing for this permissive immune environment of the lung through regulation of damage responses. Because damage is associated with poor outcome to invasive pulmonary aspergillosis, this suggested that IFNAR2 may be involved in A.

View Article and Find Full Text PDF

Background: The field of immunology has undoubtedly benefited from the use of cell lines for immunological studies; however, due to the "immortal" nature of many cell lines, they are not always the best model. Thus, direct collection and culture of primary cells from model organisms is a solution that many researchers utilize. To the best of our knowledge, there is not a singular protocol which encompasses the entire process of bone marrow cell collection through cryopreservation and resuscitation of cells from a murine model.

View Article and Find Full Text PDF

The Editorial Office retracts the article, "Contribution of Host Immune Responses Against Influenza D Virus Infection Toward Secondary Bacterial Infection in a Mouse Model" [...

View Article and Find Full Text PDF

Angiotensin Converting Enzyme 2 (ACE2) is the primary cell entry receptor for SARS-CoV and SARS-CoV-2 viruses. A disintegrin and metalloproteinase 17 (ADAM17) is a protease that cleaves ectodomains of transmembrane proteins, including that of ACE2 and the proinflammatory cytokine TNF-α, from cell surfaces upon cellular activation. We hypothesized that blockade of ADAM17 activity would alter COVID-19 pathogenesis.

View Article and Find Full Text PDF

The continuous evolution of influenza A virus (IAV) requires the influenza vaccine formulations to be updated annually to provide adequate protection. Recombinant protein-based vaccines provide safer, faster, and a more scalable alternative to the conventional embryonated egg approach for developing vaccines. However, these vaccines are typically poorer in immunogenicity than the vaccines containing inactivated or attenuated influenza viruses and require administration of a large antigen dosage together with potent adjuvants.

View Article and Find Full Text PDF

Influenza D viruses (IDV) are known to co-circulate with viral and bacterial pathogens in cattle and other ruminants. Currently, there is limited knowledge regarding host responses to IDV infection and whether IDV infection affects host susceptibility to secondary bacterial infections. To begin to address this gap in knowledge, the current study utilized a combination of and approaches to evaluate host cellular responses against primary IDV infection and secondary bacterial infection with .

View Article and Find Full Text PDF

Influenza A viruses (IAVs) have multiple mechanisms for altering the host immune response to aid in virus survival and propagation. While both type I and II interferons (IFNs) have been associated with increased bacterial superinfection (BSI) susceptibility, we found that in some cases type I IFNs can be beneficial for BSI outcome. Specifically, we have shown that antagonism of the type I IFN response during infection by some IAVs can lead to the development of deadly BSI.

View Article and Find Full Text PDF

Influenza virus infections particularly when followed by bacterial superinfections (BSI) result in significant morbidities and mortalities especially during influenza pandemics. Type I interferons (IFNs) regulate both anti-influenza immunity and host susceptibility to subsequent BSIs. These type I IFNs consisting of, among others, 14 IFN-α's and a single IFN-β, are recognized by and signal through the heterodimeric type I IFN receptor (IFNAR) comprised of IFNAR1 and IFNAR2.

View Article and Find Full Text PDF

is a mold that causes severe pulmonary infections. Our knowledge of how immune competent hosts maintain control of fungal infections while constantly being exposed to fungi is rapidly emerging. It is known that timely neutrophil recruitment to and activation in the lungs is critical to the host defense against development of invasive pulmonary aspergillosis, but the inflammatory sequelae necessary remains to be fully defined.

View Article and Find Full Text PDF

Although viruses and viral capsids induce rapid immune responses, little is known about viral pathogen-associated molecular patterns (PAMPs) that are exhibited on their surface. Here, we demonstrate that the repeating protein subunit pattern common to most virus capsids is a molecular pattern that induces a Toll-like-receptor-2 (TLR2)-dependent antiviral immune response. This early antiviral immune response regulates the clearance of subsequent bacterial superinfections, which are a primary cause of morbidities associated with influenza virus infections.

View Article and Find Full Text PDF

Unlabelled: Bacterial superinfections are a primary cause of death during influenza pandemics and epidemics. Type I interferon (IFN) signaling contributes to increased susceptibility of mice to bacterial superinfection around day 7 post-influenza A virus (IAV) infection. Here we demonstrate that the reduced susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) at day 3 post-IAV infection, which we previously reported was due to interleukin-13 (IL-13)/IFN-γ responses, is also dependent on type I IFN signaling and its subsequent requirement for protective IL-13 production.

View Article and Find Full Text PDF

Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited.

View Article and Find Full Text PDF

Aspergillus fumigatus forms ubiquitous airborne conidia that humans inhale on a daily basis. Although respiratory fungal infection activates the adaptor proteins CARD9 and MyD88 via C-type lectin, Toll-like, and interleukin-1 family receptor signals, defining the temporal and spatial pattern of MyD88- and CARD9-coupled signals in immune activation and fungal clearance has been difficult to achieve. Herein, we demonstrate that MyD88 and CARD9 act in two discrete phases and in two cellular compartments to direct chemokine- and neutrophil-dependent host defense.

View Article and Find Full Text PDF

Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent β-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible factor-1α) pathway.

View Article and Find Full Text PDF

Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A.

View Article and Find Full Text PDF

GPI-anchoring is a universal and critical post-translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI-anchored, and disruption of GPI-anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties.

View Article and Find Full Text PDF

The β-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous infections as well as life-threatening invasive diseases. Here, using in vivo models of infection, we show that the requirement for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes apparent during infection and cannot be recapitulated in vitro.

View Article and Find Full Text PDF

Upon entrance into the host, fungi encounter a myriad of host effector products and microenvironments that they sense and adapt to for survival. Alterations of the structure and composition of the cell wall is a major fungal adaptation mechanism to evade these environments. Here we discuss recent findings of host-microenvironmental induced fungal cell wall changes, including structure, composition, and protein content, and their effects on host immune responses.

View Article and Find Full Text PDF

Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content.

View Article and Find Full Text PDF

The interaction of Candida albicans with phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages.

View Article and Find Full Text PDF

Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches.

View Article and Find Full Text PDF

Onset of metabolic acidosis leads to a rapid and pronounced increase in expression of phosphoenolpyruvate carboxykinase (PEPCK) in rat renal proximal convoluted tubules. This adaptive response is modeled by treating a clonal line of porcine LLC-PK(1)-F(+) cells with an acidic medium (pH 6.9, 9 mM HCO(3)(-)).

View Article and Find Full Text PDF