Publications by authors named "Kelly Servage"

Evolutionarily conserved selenoprotein O (SELENOO) catalyzes a post-translational protein modification known as AMPylation that is essential for the oxidative stress response in bacteria and yeast. Given that oxidative stress experienced in the blood limits survival of metastasizing melanoma cells, SELENOO might be able to impact metastatic potential. However, further work is needed to elucidate the substrates and functional relevance of the mammalian homologue of SELENOO.

View Article and Find Full Text PDF

The kinase-like NiRAN domain of nsp12 in SARS-CoV-2 catalyzes the formation of the 5' RNA cap structure. This activity is required for viral replication, offering a new target for the development of antivirals. Here, we develop a high-throughput assay to screen for small molecule inhibitors targeting the SARS-CoV-2 NiRAN domain.

View Article and Find Full Text PDF
Article Synopsis
  • ATP-grasp superfamily enzymes have a hand-like structure and perform various reactions using a similar catalytic mechanism, with over 30 families linked to cellular functions and diseases.
  • The study identifies C12orf29 (RLIG1) as a unique ATP-grasp enzyme that ligates RNA, specifically targeting RNA halves with certain chemical groups.
  • Research indicates that RLIG1 impacts tRNA levels in knockout mice, especially in females, and possesses a distinct RNA ligase structure that plays a crucial role in tRNA biology.
View Article and Find Full Text PDF

During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, binding immunoglobulin protein (BiP), plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme filamentation induced by cyclic-AMP domain protein (FicD) that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress.

View Article and Find Full Text PDF

ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here we identify C12orf29 as an atypical ATP-grasp enzyme that ligates RNA.

View Article and Find Full Text PDF

The plant pathogen encodes a type III secretion system avirulence effector protein, AvrB, that induces a form of programmed cell death called the hypersensitive response in plants as a defense mechanism against systemic infection. Despite the well-documented catalytic activities observed in other Fido (c, c, and AvrB) proteins, the enzymatic activity and target substrates of AvrB have remained elusive. Here, we show that AvrB is an unprecedented glycosyltransferase that transfers rhamnose from UDP-rhamnose to a threonine residue of the guardee protein RIN4.

View Article and Find Full Text PDF

Unlabelled: During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, BiP, plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme FicD that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress.

View Article and Find Full Text PDF
Article Synopsis
  • Previous studies confirmed that WNK kinases 1 and 3 function as osmosensors and play a role in regulating cell volume.
  • Hydrostatic pressure affects WNK kinases by inducing phosphorylation in cell cultures and specific tubules, enhancing their activity and altering their structure.
  • Investigations using various techniques (like SEC-MALS and NMR) show that hydrostatic pressure changes the configuration of WNK3 from a dimer to a monomer, suggesting a complex relationship between pressure and osmosensing.
View Article and Find Full Text PDF

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage.

View Article and Find Full Text PDF

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids.

View Article and Find Full Text PDF

Exosomes are secreted small extracellular vesicles (EVs) packaged with diverse biological cargo. They mediate complex intercellular communications among cells in maintenance of normal physiology or to trigger profound disease progression. Increasing numbers of studies have identified exosome-mediated functions contributing to cancer progression, including roles in paracrine cell-to-cell communication, stromal reprogramming, angiogenesis, and immune responses.

View Article and Find Full Text PDF

ADP-ribosyltransferases (ARTs) are a widespread superfamily of enzymes frequently employed in pathogenic strategies of bacteria. Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaire's disease, has acquired over 330 translocated effectors that showcase remarkable biochemical and structural diversity. However, the ART effectors that influence L.

View Article and Find Full Text PDF

The Vibrio parahaemolyticus T3SS effector VopQ targets host-cell V-ATPase, resulting in blockage of autophagic flux and neutralization of acidic compartments. Here, we report the cryo-EM structure of VopQ bound to the V subcomplex of the V-ATPase. VopQ inserts into membranes and forms an unconventional pore while binding directly to subunit c of the V-ATPase membrane-embedded subcomplex V.

View Article and Find Full Text PDF

Extracellular vesicles secreted from tumor cells are functional vehicles capable of contributing to intercellular communication and metastasis. A growing number of studies have focused on elucidating the role that tumor-derived extracellular vesicles play in spreading pancreatic cancer to other organs, due to the highly metastatic nature of the disease. We recently showed that small extracellular vesicles secreted from pancreatic cancer cells could initiate malignant transformation of healthy cells.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium influx through STIM1/Orai1 channels is vital for the disassembly of integrin-mediated focal adhesions (FAs), which is crucial for cell migration.
  • The study reveals that calcium activates the GTPase Arf5 via the calcium-activated GEF IQSec1, both of which are necessary for FA disassembly.
  • Additionally, IQSec1 forms a complex with ORP3, which helps facilitate lipid exchange and contributes to FA turnover during cell movement.
View Article and Find Full Text PDF

The propagation of species depends on the ability of germ cells to protect their genome from numerous exogenous and endogenous threats. While these cells employ ubiquitous repair pathways, specialized mechanisms that ensure high-fidelity replication, chromosome segregation, and repair of germ cell genomes remain incompletely understood. We identified Germ Cell Nuclear Acidic Peptidase (GCNA) as a conserved regulator of genome stability in flies, worms, zebrafish, and human germ cell tumors.

View Article and Find Full Text PDF

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases.

View Article and Find Full Text PDF

Unlabelled: Cancer evolves through a multistep process that occurs by the temporal accumulation of genetic mutations. Tumor-derived exosomes are emerging contributors to tumorigenesis. To understand how exosomes might contribute to cell transformation, we utilized the classic two-step NIH/3T3 cell transformation assay and observed that exosomes isolated from pancreatic cancer cells, but not normal human cells, can initiate malignant cell transformation and these transformed cells formed tumors in vivo.

View Article and Find Full Text PDF

Enzymes with a protein kinase fold transfer phosphate from adenosine 5'-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases.

View Article and Find Full Text PDF

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis.

View Article and Find Full Text PDF

In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response.

View Article and Find Full Text PDF

The Gram-negative bacterium is an opportunistic human pathogen and the leading cause of seafood-borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided with new virulence tools to cause disease.

View Article and Find Full Text PDF

Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated.

View Article and Find Full Text PDF

Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions.

View Article and Find Full Text PDF