Formalin-fixed paraffin-embedded (FFPE) tissue samples are a potentially valuable resource of expression information for medical research, but are under-utilized due to degradation and modification of the RNA. Using a random primer-based RNA amplification strategy, we have evaluated multiple protocols for the extraction and isolation of RNA from FFPE samples. We found that the RecoverAll RNA isolation procedure with three or four slices (ten-microns in thickness), supplemented with additional DNAse, gave optimal results.
View Article and Find Full Text PDFWe have shown that smoking impacts bronchial airway gene expression and that heterogeneity in this response associates with smoking-related disease risk. In this study, we sought to determine whether microRNAs (miRNAs) play a role in regulating the airway gene expression response to smoking. We examined whole-genome miRNA and mRNA expression in bronchial airway epithelium from current and never smokers (n = 20) and found 28 miRNAs to be differentially expressed (P < 0.
View Article and Find Full Text PDFBackground: Recent studies indicate that microRNAs (miRNAs) are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA.
View Article and Find Full Text PDF