Publications by authors named "Kelly Roballo"

Peripheral nerve injury has become an increasingly prevalent clinical concern, causing great morbidity in the community. Although there have been significant advancements in the treatment of peripheral nerve damage in recent years, the issue of long-term nerve regeneration remains. Furthermore, Wallerian degeneration has created an obstacle to long-term nerve regeneration.

View Article and Find Full Text PDF

Background: Blast-induced spinal cord injury (bSCI) is prevalent among military populations and frequently leads to irreversible spinal cord tissue damage that manifests as sensorimotor and autonomic nervous system dysfunction. Clinical recovery from bSCI has been proven to be multifactorial, as it is heavily dependent on the function of numerous cell populations in the tissue environment, as well as extensive ongoing inflammatory processes. This varied recovery process is thought to be due to irreversible spinal cord damage after 72 hours post-injury.

View Article and Find Full Text PDF

Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury.

View Article and Find Full Text PDF
Article Synopsis
  • Peripheral Nerve Injuries (PNI) affect over 20 million Americans, leading to long-term disability and muscle atrophy due to slow nerve regeneration.
  • Researchers hypothesize that reprogramming muscle to an embryonic-like state using NANOG can enhance its ability to recover after PNI.
  • In their study, NANOG expression in a mouse model significantly improved muscle regeneration and motor function compared to normal mice, indicating that this reprogramming approach could be beneficial for treating PNI.
View Article and Find Full Text PDF

The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS).

View Article and Find Full Text PDF

Mitochondria are organelles present in the cytoplasm of eukaryotic cells; they play a key role in adenosine triphosphate (ATP) synthesis and oxidative phosphorylation. Mitochondria have their own DNA, mitochondrial DNA (mtDNA), keeping the function of the mitochondria. Mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters is and considered essential in mtDNA replication and transcription.

View Article and Find Full Text PDF

Peripheral nerve injury and the nerves' subsequent repair and regeneration continues to be marked clinically by poor functional recovery. The analysis of nerve morphology is an aspect which may provide an impact on successful clinical outcomes through better prediction of donor and recipient matching. In this study, we evaluated the morphological aspects of the human obturator nerve for a better understanding of its potential in nerve transplantation.

View Article and Find Full Text PDF

Segmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points.

View Article and Find Full Text PDF

This review demonstrates current literature on pineal gland physiology, pathology, and animal model experiments to concisely explore future needs in research development with respect to pineal gland function and neuro-regenerative properties. The pineal gland plays an integral role in sleep and recovery by promoting physiologic circadian rhythms via production and release of melatonin. Yet, the current literature shows that the pineal gland has neuroprotective effects that modulate both peripheral and central nerve injuries through several direct and indirect mechanisms, such as angiogenesis and induction of growth factors and anti-inflammatory mediators.

View Article and Find Full Text PDF

We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery.

View Article and Find Full Text PDF

This review addresses the accumulating evidence that live (not decellularized) allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues. This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion. Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are vesicles released by cells, which due to their cargo and cell membrane proteins induce changes in the recipient cells. These vesicles can be a novel option to induce stem cell differentiation. Here we described a method to induce mesenchymal stem cell differentiation (MSC) into neuron-like cells using small EVs from neurons.

View Article and Find Full Text PDF

The immune system is mainly responsible for protecting the organism against agents that may interfere in its homeostasis. Thus, understand how this system develops and operates is very important, for create new therapies to assist this system in its operation, such as its failure. In domestic dogs, few studies show how actually occurs the development, maturation and functioning of the immune system.

View Article and Find Full Text PDF

An adult red-legged seriema () presented with a comminuted fracture of the tibiotarsus and fibula. Surgery was performed, and a type II external fixator, with 2 distal and 2 proximal pins, was used to stabilize the fracture. After a 10-day stabilization period, the bird developed a second fracture on the same bone, proximal to the first fracture site.

View Article and Find Full Text PDF

Pluripotent stem cells have been studied as source of cells for regenerative medicine and acquire or genetic diseases, as an innovative therapy. Most tissues have stem cells populations, however in few quantities or impossible to be used during adult life, which lead to scientists look for new sources. Thus, this study aimed to analyze the presence of pluripotent cells in the uterus and placenta, following up non-pregnant, pregnant (begin, middle, and final), and postpartum periods in dogs.

View Article and Find Full Text PDF

Absence or reduced frequency of human regulatory T cells (Tregs) can limit the control of inflammatory responses, autoimmunity, and the success of transplant engraftment. Clinical studies indicate that use of Tregs as immunotherapeutics would require billions of cells per dose. The Quantum® Cell Expansion System (Quantum system) is a hollow-fiber bioreactor that has previously been used to grow billions of functional T cells in a short timeframe, 8-9 d.

View Article and Find Full Text PDF

Gene editing in large animal models for future applications in translational medicine and food production must be deeply investigated for an increase of knowledge. The mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters. This gene maintains mtDNA, and it is essential for the initiation of mtDNA transcription.

View Article and Find Full Text PDF

Peripheral nerves (PNs) are frequently injured as a result of trauma or disease. Development of therapies to regenerate PNs requires the use of animal models, typically beginning in rodents and progressing to larger species. There are several large animal models of PN regeneration that each has their benefits and drawbacks.

View Article and Find Full Text PDF

Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI.

View Article and Find Full Text PDF

Potential mechanisms involved in neural differentiation of adipocyte derived stem cells (ADSCs) are still unclear. In the present study, extracellular vesicles (EVs) were tested as a potential mechanism involved in the neuronal differentiation of stem cells. In order to address this, ADSCs and neurons (BRC) were established in primary culture and co-culture at three timepoints.

View Article and Find Full Text PDF

Background: Xenotransplantation of spermatogonial stem cells (SSCs) has become a popular topic in various research fields because manipulating these cells can provide insights into the mechanisms associated with germ cell lines and the entire spermatogenesis process; moreover, these cells can be used in several biotechnology applications. To achieve successful xenotransplantation, the in vitro microenvironment in which SSCs are cultured should be an ideal microenvironment for self-renewal and similar to the in vivo testicular microenvironment. The age of the donor, the correct spermatogenesis cycle, and the quality of the donor tissue are also important.

View Article and Find Full Text PDF

The mitochondrial transcription factor A (TFAM) is a mitochondrial DNA (mtDNA) binding protein essential for the initiation of transcription and genome maintenance. Recently it was demonstrated that the primary role of TFAM is to maintain the integrity of mtDNA and that it is a key regulator of mtDNA copy number. It was also shown that TFAM plays a central role in the mtDNA stress-mediated inflammatory response.

View Article and Find Full Text PDF

Allogeneic peripheral nerve (PN) transplants are an effective bridge for stimulating regeneration of segmental PN defects, but there are currently no detailed studies about the timeline and scope of the immunological response for PN allografting. In this study, the cellular immune response in PN allografts and autograft was studied during the acute and chronic phases of a 1.0 cm critical size defect in the rat sciatic nerve at 3, 7, 14, 28 and 98 days after grafting autologous or allogeneic nerves without any immunosuppressive treatment.

View Article and Find Full Text PDF

Introduction: Owing to their similarity with humans, rabbits are useful for multiple applications in biotechnology and translational research from basic to preclinical studies. In this sense, mesenchymal stem cells (MSCs) are known for their therapeutic potential and promising future in regenerative medicine. As many studies have been using rabbit adipose-derived MSCs (ASCs) as a model of human ASCs (hASCs), it is fundamental to compare their characteristics and understand how distinct features could affect the translation to human medicine.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) are precursors of gametes that can generate new individuals throughout life in both males and females. Additionally, PGCs have been shown to differentiate into embryonic germ cells (EGCs) after in vitro culture. Most studies investigating germinative cells have been performed in rodents and humans but not dogs (Canis lupus familiaris).

View Article and Find Full Text PDF