Publications by authors named "Kelly Rdw"

Article Synopsis
  • * Deleting certain HDACs in embryonic stem cells (ESCs) unexpectedly reduces the expression of key pluripotency-related transcription factors despite HDACs being generally viewed as repressors.
  • * Inhibiting HDACs and the transcriptional activator BRD4 results in decreased expression of pluripotency genes, indicating that HDACs help maintain pluripotency by regulating enhancer activity and ensuring RNA polymerase II recruitment.
View Article and Find Full Text PDF

Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of and in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, and (OSN).

View Article and Find Full Text PDF

Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer.

View Article and Find Full Text PDF

Stalled replication forks can be restarted and repaired by RAD51-mediated homologous recombination (HR), but HR can also perform post-replicative repair after bypass of the obstacle. Bulky DNA adducts are important replication-blocking lesions, but it is unknown whether they activate HR at stalled forks or behind ongoing forks. Using mainly BPDE-DNA adducts as model lesions, we show that HR induced by bulky adducts in mammalian cells predominantly occurs at post-replicative gaps formed by the DNA/RNA primase PrimPol.

View Article and Find Full Text PDF

Proteomic analysis of histones has shown that they are subject to a superabundance of acylations, which extend far beyond acetylation, to include: crotonylation, propionylation, butyrylation, malonylation, succinylation, β-hydroxybutyrylation and 2-hydroxyisobutyrylation. To date, much of the functional data has focussed on histone crotonylation which, similar to acetylation, has been associated with positive gene regulation and is added by the acyltransferase, p300. Although Sirtuins 1-3, along with HDAC3, have been shown to possess decrotonylase activity in vitro, there is relatively little known about the regulation of histone crotonylation in vivo.

View Article and Find Full Text PDF

The mitochondrial genome has a major role to play in establishing and maintaining pluripotency. Furthermore, mitochondrial DNA (mtDNA) copy is strictly regulated during differentiation. Undifferentiated, pluripotent cells possess fewer than 300 copies of mtDNA, which establishes the mtDNA set point and promotes cell proliferation and, as a result, these cells rely on glycolysis with some support from oxidative phosphorylation (OXPHOS) for the generation of ATP.

View Article and Find Full Text PDF

Histone deacetylases 1 and 2 (HDAC1/2) form the core catalytic components of corepressor complexes that modulate gene expression. In most cell types, deletion of both Hdac1 and Hdac2 is required to generate a discernible phenotype, suggesting their activity is largely redundant. We have therefore generated an ES cell line in which Hdac1 and Hdac2 can be inactivated simultaneously.

View Article and Find Full Text PDF

HDACs (histone deacetylases) 1 and 2 are ubiquitous long-lived proteins, which are often found together in three major multiprotein co-repressor complexes: Sin3, NuRD (nucleosome remodelling and deacetylation) and CoREST (co-repressor for element-1-silencing transcription factor). Although there is a burgeoning number of non-histone proteins within the acetylome, these complexes contain multiple DNA/chromatin-recognition motifs, which, in combination with transcription factors, target HDAC1/2 to chromatin. Their physiological roles should therefore be viewed within the framework of chromatin manipulation.

View Article and Find Full Text PDF

Mitochondrial DNA haplotypes are associated with various phenotypes, such as altered susceptibility to disease, environmental adaptations, and aging. Accumulating evidence suggests that mitochondrial DNA is essential for cell differentiation and the cell phenotype. However, the effects of different mitochondrial DNA haplotypes on differentiation and development remain to be determined.

View Article and Find Full Text PDF

DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%).

View Article and Find Full Text PDF

Undifferentiated mouse embryonic stem cells (ESCs) possess low numbers of mitochondrial DNA (mtDNA), which encodes key subunits associated with the generation of ATP through oxidative phosphorylation (OXPHOS). As ESCs differentiate, mtDNA copy number is regulated by the nuclear-encoded mtDNA replication factors, which initiate a major replication event on Day 6 of differentiation. Here, we examined mtDNA replication events in somatic cells reprogrammed to pluripotency, namely somatic cell-ES (SC-ES), somatic cell nuclear transfer ES (NT-ES) and induced pluripotent stem (iPS) cells, all at low-passage.

View Article and Find Full Text PDF
Article Synopsis
  • Oocyte cryopreservation offers a promising alternative to traditional methods like embryo freezing and ovarian grafting, aiding in infertility treatments and conservation efforts for endangered species.
  • The study demonstrated that mouse oocytes vitrified with 0.1 and 0.3 M trehalose had better developmental outcomes compared to the 0.2 M group, but all could develop into blastocysts.
  • Although blastocysts derived from vitrified oocytes showed some signs of abnormality, successful live births resulted from certain embryos, emphasizing the need for a supportive endometrial environment for genetic stability.
View Article and Find Full Text PDF

The persistence of A-type nuclear lamin in somatic cell nuclear transfer (SCNT) embryos has been proposed as a marker for incomplete nuclear reprogramming. Using monoclonal antibodies to A/C- (A/C-346 and A/C-131C3) and B-type lamin, we compared distribution during early development of bovine IVF, parthenogenetic and SCNT embryos. A/C-346 staining was observed in the pronuclei of IVF embryos and in nuclei at the two-cell stage, but was not detected in subsequent cleavage stages up to and including hatched blastocysts.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is a 16.6 kb genome that encodes for 13 of the 100+ subunits of the electron transfer chain (ETC), whilst the other subunits are encoded by chromosomal DNA. The ETC is responsible for the generation of the majority of cellular ATP through the process of oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

It is now over a decade since the birth, in 1996, of Dolly the first animal to be produced by nuclear transfer using an adult derived somatic cell as nuclear donor. Since this time similar techniques have been successfully applied to a range of species producing live offspring and allowing the development of transgenic technologies for agricultural, biotechnological and medical uses. However, though applicable to a range of species, overall, the efficiencies of development of healthy offspring remain low.

View Article and Find Full Text PDF

It is now 8 years since the birth of Dolly, the first animal produced by nuclear transfer using a donor cell population established from an adult animal. During this time, the technique of nuclear transfer has been successfully applied to a range of mammalian species for the production of offspring using a plethora of donor cell types derived from both foetal and adult tissues. In addition, when coupled with genetic manipulation of the donor cells, transgenic offspring have been produced with a range of genetic modifications including gene knockouts and gene knockings.

View Article and Find Full Text PDF