TET2 enzymatically converts 5-methylcytosine to 5-hydroxymethylcytosine as well as other covalently modified cytosines and its mutations are common in myeloid leukemia. However, the exact mechanism and the extent to which TET2 mutations affect DNA methylation remain in question. Here, we report on DNA methylomes in TET2 wild-type (TET2-WT) and mutant (TET2-MT) cases of chronic myelomonocytic leukemia (CMML).
View Article and Find Full Text PDFEpigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7, which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors.
View Article and Find Full Text PDFTET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples.
View Article and Find Full Text PDFNOL7 is a putative tumor suppressor gene localized to 6p23, a region with frequent loss of heterozygosity in a number of cancers, including cervical cancer (CC). We have previously demonstrated that reintroduction of NOL7 into CC cells altered the angiogenic phenotype and suppressed tumor growth in vivo by 95%. Therefore, to understand its mechanism of inactivation in CC, we investigated the genetic and epigenetic regulation of NOL7.
View Article and Find Full Text PDFPurpose: Cancer germline (CG) antigens are frequently expressed and hypomethylated in epithelial ovarian cancer (EOC), but the relationship of this phenomenon to global DNA hypomethylation is unknown. In addition, the potential mechanisms leading to DNA hypomethylation, and its clinicopathologic significance in EOC, have not been determined.
Experimental Design: We used quantitative mRNA expression and DNA methylation analyses to determine the relationship between expression and methylation of X-linked (MAGE-A1, NY-ESO-1, XAGE-1) and autosomal (BORIS, SOHLH2) CG genes, global DNA methylation (5mdC levels, LINE-1, Alu, and Sat-α methylation), and clinicopathology, using 75 EOC samples.
Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the COOH-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells.
View Article and Find Full Text PDFBackground: Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype.
Methods: Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used.
KIT mutations have been identified in several malignancies, including acute myeloid leukemia (AML) and systemic mastocytosis (SM). Mast cell leukemia (MCL) is the most aggressive mast cell neoplasm, but has not been well studied due to its rarity. We identified novel KIT transcripts in two patients with MCL and two patients with SM with an associated hematological disorder, but not from two patients with SM.
View Article and Find Full Text PDFRev Recent Clin Trials
May 2007
FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that is expressed on the surface of hematopoietic stem cells and plays an important role in normal hematopoiesis. FLT3 is mutated in approximately one-third of cases of acute myeloid leukemia (AML) with normal karyotype. The mutations are most commonly internal tandem duplications found in the juxtamembrane domain of the FLT3 receptor.
View Article and Find Full Text PDF