Advanced used nuclear fuel (UNF) reprocessing strategies are limited by the complex radiochemical separations and engineering required to achieve the separation of actinides (An) from neutron scavenging lanthanides (Ln). The accessibility of the hexavalent oxidation state for the actinides (U - Am) provides a pathway to achieving a group hexavalent actinide separation from the trivalent lanthanides and Cm. The solid oxidant and ion exchanger, sodium bismuthate (NaBiO), has been demonstrated to quantitatively oxidize and separate Am from trivalent Cm in a column chromatographic system.
View Article and Find Full Text PDFDuring routine operation of the Facility for Rare Isotope Beams (FRIB), radionuclides will accumulate in both the aqueous beam dump and along the beamline in the process of beam purification. These byproduct radionuclides, many of which are far from stability, can be collected and purified for use in other scientific applications in a process called isotope harvesting. In this work, the viability of Zr harvesting from solid components was investigated at the National Superconducting Cyclotron Laboratory.
View Article and Find Full Text PDF