Smoke dyes are complex molecular systems that have the potential to form many molecular derivatives and fragments when deployed. The chemical analysis of smoke samples is challenging due to the adiabatic temperature of the pyrotechnic combustion and the molecular complexity of the physically dispersed reaction products. Presented here is the characterization of the reaction byproducts of a simulant Mk124 smoke signal on a multigram scale, which contain the dye disperse red 9 (1-(methylamino)anthraquinone), by ambient ionization mass spectrometry.
View Article and Find Full Text PDF"Green" pyrotechnics seek to remove known environmental pollutants and health hazards from their formulations. This chemical engineering approach often focuses on maintaining performance effects upon replacement of objectionable ingredients, yet neglects the chemical products formed by the exothermic reaction. In this work, milligram quantities of a lab-scale pyrotechnic red smoke composition were functioned within a thermal probe for product identification by pyrolysis-gas chromatography-mass spectrometry.
View Article and Find Full Text PDF