Background: Stress triggers alcohol use and relapse to drinking, with different effects by sex. Women are more susceptible to stress-related alcohol misuse, and most stressors in rodents produce sexually divergent effects. Female rodents are particularly sensitive to the stress produced by solitary housing, yet the impact of housing conditions on the establishment, escalation, and post-abstinence potentiation of intermittent access alcohol drinking in male and female rats, and the interaction of these factors with stress history are not well described.
View Article and Find Full Text PDFStress alters both cognitive and emotional function, and increases risk for a variety of psychological disorders, such as depression and posttraumatic stress disorder. The prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Therefore, understanding how stress-induced changes in the structure and function of the prefrontal cortex are related to stress-induced changes in behavior may elucidate some of the mechanisms contributing to stress-sensitive disorders.
View Article and Find Full Text PDFChronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge.
View Article and Find Full Text PDFAdolescence is an important period for HPA axis development and synapse maturation and reorganization in the prefrontal cortex (PFC). Thus, stress during adolescence could alter stress-sensitive brain regions such as the PFC and may alter the impact of future stressors on these brain regions. Given that women are more susceptible to many stress-linked psychological disorders in which dysfunction of PFC is implicated, and that this increased vulnerability emerges in adolescence, stress during this time could have sex-dependent effects.
View Article and Find Full Text PDFProlonged or repeated exposure to stress increases risk for a variety of psychological disorders, many of which are marked by dysfunction of corticolimbic brain regions. Notably, women are more likely than men to be diagnosed with these disorders, especially when onset of symptoms follows stressful life events. Using rodent models, investigators have recently begun to elucidate sex-specific changes in the brain and behavior that occur immediately following chronic stress.
View Article and Find Full Text PDFThe ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy.
View Article and Find Full Text PDFRisk for stress-sensitive psychopathologies differs in men and women, yet little is known about sex-dependent effects of stress on cellular structure and function in corticolimbic regions implicated in these disorders. Determining how stress influences these regions in males and females will deepen our understanding of the mechanisms underlying sex-biased psychopathology. Here, we discuss sex differences in CRF regulation of arousal and cognition, glucocorticoid modulation of amygdalar physiology and alcohol consumption, the age-dependent impact of social stress on prefrontal pyramidal cell excitability, stress effects on the prefrontal parvalbumin system in relation to emotional behaviors, contributions of stress and gonadal hormones to stress effects on prefrontal glia, and alterations in corticolimbic structure and function after cessation of chronic stress.
View Article and Find Full Text PDFPsychopharmacology (Berl)
January 2019
Background: Stress is associated with cognitive and emotional dysfunction, and increases risk for a variety of psychological disorders, including depression and posttraumatic stress disorder. Prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Extinction of conditioned fear provides an excellent model system for examining how stress-induced changes in corticolimbic structure and function are related to stress-induced changes in neural function and behavior, as the neural circuitry underlying this behavior is well characterized.
View Article and Find Full Text PDFChronic stress produces differential dendritic remodeling of pyramidal neurons in medial prefrontal cortex of male and female rats. In males, this dendritic remodeling is reversible. However, the timeline of recovery, as well as the potential for reversibility in females, is unknown.
View Article and Find Full Text PDFDysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval.
View Article and Find Full Text PDFThe medial prefrontal cortex (mPFC) is involved in a variety of important functions including emotional regulation, HPA axis regulation, and working memory. It also demonstrates remarkable plasticity in an experience-dependent manner. There is extensive evidence that stressful experiences can produce profound changes in the morphology of neurons within mPFC with a variety of behavioral consequences.
View Article and Find Full Text PDF