Publications by authors named "Kelly M Kitchens"

We used fluorescence spectroscopy and surface tensiometry to study the interaction between low-generation (G1 and G4) poly(amidoamine) (PAMAM) dendrimers, potential vehicles for intracellular drug delivery, and model lipid bilayers. Membrane association of fluorescently labeled dendrimers, measured by fluorescence anisotropy, increased with increasing size of the dendrimer and with increasing negative charge density in the membrane, indicating the electrostatic nature of the interaction. When the membrane was doped with pyrene-labeled phosphatidyl glycerol (pyrene-PG), pyrene excimer fluorescence demonstrated a dendrimer-induced selective aggregation of negatively charged lipids when the membrane was in the liquid crystalline state.

View Article and Find Full Text PDF

AT-1002 a 6-mer synthetic peptide belongs to an emerging novel class of compounds that reversibly increase paracellular transport of molecules across the epithelial barrier. The aim of this project was to elaborate on the structure-activity relationship of this peptide with the specific goal to replace the P2 cysteine amino acid. Herein, we report the discovery of peptides that exhibit reversible permeability enhancement properties with an increased stability profile.

View Article and Find Full Text PDF

Previous studies from our group demonstrated visual evidence that endocytosis mechanism(s) contribute to the internalization and intracellular trafficking of cationic and anionic poly(amidoamine) (PAMAM) dendrimers across Caco-2 cells. These dendrimers colocalized with established endocytosis markers, which suggested PAMAM dendrimers may be internalized by a clathrin-dependent endocytosis mechanism and are rapidly trafficked to endosomal and lysosomal compartments. In the present study, generation 4 PAMAM-NH2 (G4NH2) dendrimer was labeled with tritium to measure the rate of uptake and permeability in Caco-2 cells.

View Article and Find Full Text PDF

Improving the oral bioavailability of therapeutic compounds remains a challenging area of research. Polyamidoamine (PAMAM) dendrimers are promising candidates for oral drug delivery due to their well-defined compact structure, versatility of surface functionalities, low polydispersity, and ability to enhance transepithelial transport. However, potential cytotoxicity has hampered the development of PAMAM dendrimers for in vivo applications.

View Article and Find Full Text PDF

Purpose: To investigate the internalization and subcellular trafficking of fluorescently labeled poly (amidoamine) (PAMAM) dendrimers in intestinal cell monolayers.

Materials And Methods: PAMAM dendrimers with positive or negative surface charge were conjugated to fluorescein isothiocyanate (FITC) and visualized for colocalization with endocytosis markers using confocal microscopy. Effect of concentration, generation and charge on the morphology of microvilli was observed using transmission electron microscopy.

View Article and Find Full Text PDF

Purpose: To investigate the transport of poly(amidoamine) (PAMAM) dendrimers with positive, neutral and negatively charged surface groups across Caco-2 cell monolayers.

Methods: Cationic PAMAM-NH2 (G2 and G4), neutral PAMAM-OH (G2), and anionic PAMAM-COOH (G1.5-G3.

View Article and Find Full Text PDF

This article summarizes our efforts to evaluate the potential of poly (amidoamine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the permeability of a series of cationic PAMAM-NH2 (G0-G4) dendrimers across Caco-2 cell monolayers was evaluated as a function of dendrimer generation, concentration, and incubation time. The influence of dendrimer surface charge on the integrity, paracellular permeability, and viability of Caco-2 cell monolayers was monitored by measuring the transepithelial electrical resistance (TEER), 14C-mannitol permeability, and leakage of lactate dehydrogenase (LDH) enzyme, respectively.

View Article and Find Full Text PDF