Publications by authors named "Kelly M Biette"

Detection of cancer early, when it is most treatable, remains a significant challenge because of the lack of diagnostic methods sufficiently sensitive to detect nascent tumors. Early-stage tumors are small relative to their tissue of origin, heterogeneous, and infrequently manifest in clinical symptoms. The detection of early-stage tumors is challenging given the lack of tumor-specific indicators (ie, protein biomarkers, circulating tumor DNA) to enable detection using a noninvasive diagnostic assay.

View Article and Find Full Text PDF
Article Synopsis
  • - The Mercy Halo Ovarian Cancer Test (OC Test) is a new screening method that detects ovarian cancer by analyzing proteins found on tumor-associated extracellular vesicles in blood, aiming for both high sensitivity and specificity.
  • - In a study involving 397 women, the OC Test showed impressive results: 97% specificity and sensitivity for high-grade serous carcinoma (HGSC), and it also identified 73.5% of non-HGSC ovarian cancer cases.
  • - Compared to the conventional cancer antigen 125, the OC Test resulted in fewer false positives among patients with non-cancerous conditions, indicating its potential for effective ovarian cancer screening.
View Article and Find Full Text PDF

Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that "kinetic synergy" can arise through TFs acting on distinct steps of the transcription cycle.

View Article and Find Full Text PDF

Transcription of developmental genes is controlled by multiple enhancers. Frequently, more than one enhancer can activate transcription from the same promoter in the same cells. How is regulatory information from multiple enhancers combined to determine the overall expression output? We measure nascent transcription driven by a pair of shadow enhancers, each enhancer of the pair separately, and each duplicated, using live imaging in Drosophila embryos.

View Article and Find Full Text PDF

Hunchback is a bifunctional transcription factor that can activate and repress gene expression in Drosophila development. We investigated the regulatory DNA sequence features that control Hunchback function by perturbing enhancers for one of its target genes, even-skipped (eve). While Hunchback directly represses the eve stripe 3+7 enhancer, we found that in the eve stripe 2+7 enhancer, Hunchback repression is prevented by nearby sequences-this phenomenon is called counter-repression.

View Article and Find Full Text PDF

Computational models of enhancer function generally assume that transcription factors (TFs) exert their regulatory effects independently, modeling an enhancer as a "bag of sites." These models fail on endogenous loci that harbor multiple enhancers, and a "two-tier" model appears better suited: in each enhancer TFs work independently, and the total expression is a weighted sum of their expression readouts. Here, we test these two opposing views on how cis-regulatory information is integrated.

View Article and Find Full Text PDF

The amyloid β-peptide (Aβ) of Alzheimer's disease (AD) is generated by proteolysis within the transmembrane domain (TMD) of a C-terminal fragment of the amyloid β protein-precursor (APP CTFβ) by the γ-secretase complex. This processing produces Aβ ranging from 38 to 49 residues in length. Evidence suggests that this spectrum of Aβ peptides is the result of successive γ-secretase cleavages, with endoproteolysis first occurring at the ε sites to generate Aβ48 or Aβ49, followed by C-terminal trimming mostly every three residues along two product lines to generate shorter, secreted forms of Aβ: the primary Aβ49-46-43-40 line and a minor Aβ48-45-42-38 line.

View Article and Find Full Text PDF

The National Institutes of Health (NIH) encourages trainees to make Individualized Development Plans to help them prepare for academic and nonacademic careers. We describe our approach to building an Individualized Development Plan, the reasons we find them useful and empowering for both PIs and trainees, and resources to help other labs implement them constructively.

View Article and Find Full Text PDF

Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells.

View Article and Find Full Text PDF

Background: Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein.

View Article and Find Full Text PDF