Publications by authors named "Kelly Ledford"

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS).

View Article and Find Full Text PDF

Introduction: Bone marrow derived cellular therapies are an emerging approach to promoting therapeutic angiogenesis in ischemic cardiovascular disease. However, the percentage of regenerative cells in bone marrow mononuclear cells (BMMNCs) is small, and large amounts of BMMNCs are required. Ixmyelocel-T, an expanded autologous multicellular therapy, is manufactured from a small sample of bone marrow aspirate.

View Article and Find Full Text PDF

Introduction: Advanced atherosclerotic lesions are characterized by lipid accumulation, inflammation, and defective efferocytosis. An ideal therapy should address all aspects of this multifactorial disease. Ixmyelocel-T therapy, an expanded autologous multicellular therapy showing clinical promise in the treatment of diseases associated with advanced atherosclerosis, includes a novel population of M2-like macrophages.

View Article and Find Full Text PDF

Introduction: M2 macrophages promote tissue repair and regeneration through various mechanisms including immunomodulation and scavenging of tissue debris. Delivering increased numbers of these cells to ischemic tissues may limit tissue injury and promote repair. Ixmyelocel-T is an expanded, autologous multicellular therapy cultured from bone-marrow mononuclear cells (BMMNCs).

View Article and Find Full Text PDF

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance and endothelial survival. However, its role in the morphology of macrovessels remains unknown. Mice lacking Ceacam1 (Cc1-/-) exhibit hyperinsulinemia, which causes insulin resistance and fatty liver.

View Article and Find Full Text PDF

The carcinoembryonic antigen-related cell adhesion molecule 1 regulates insulin sensitivity by promoting hepatic insulin clearance. Mice bearing a null mutation of Ceacam1 gene (Cc1(-/-)) develop impaired insulin clearance followed by hyperinsulinemia and insulin resistance, in addition to visceral obesity and increased plasma fatty acids. Because insulin resistance is associated with increased blood pressure, we investigated whether they develop higher blood pressure with activated renal renin-angiotensin system and whether this is mediated, in part, by the upregulation of renal (pro)renin receptor (PRR) expression.

View Article and Find Full Text PDF

There is a large body of preclinical research demonstrating the efficacy of gene and cellular therapy for the potential treatment of severe (limb-threatening) peripheral arterial disease (PAD), including evidence for growth and transcription factors, monocytes, and mesenchymal stem cells. While preclinical research has advanced into early phase clinical trials in patients, few late-phase clinical trials have been conducted. The reasons for the slow progression of these therapies from bench to bedside are as complicated as the fields of gene and cellular therapies.

View Article and Find Full Text PDF

Aastrom Biosciences has developed a proprietary cell-processing technology that enables the manufacture of ixmyelocel-T, a patient-specific multicellular therapy expanded from a small sample of a patient's own bone marrow. Ixmyelocel-T is produced under current good manufacturing practices (cGMP) in a fully closed, automated system that expands mesenchymal stem cells (MSCs) and macrophages. While the cell types in ixmyelocel-T are the same as those found in the bone marrow, the numbers of MSCs and alternative macrophages are greater in ixmyelocel-T.

View Article and Find Full Text PDF

Transgenic liver-specific inactivation of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) impairs hepatic insulin clearance and causes hyperinsuline-mia, insulin resistance, elevation in hepatic and serum triglyceride levels, and visceral obesity. It also predisposes to nonalchoholic steatohepatitis (NASH) in response to a high-fat diet. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we investigated whether Ceacam1 (gene encoding CEACAM1 protein) null mice with impaired insulin clearance also develop a NASH-like phenotype on a prolonged high-fat diet.

View Article and Find Full Text PDF

Although FK506-binding protein 52 (FKBP52) is an established positive regulator of glucocorticoid receptor (GR) activity, an in vivo role for FKBP52 in glucocorticoid control of metabolism has not been reported. To address this question, FKBP52(+/-) mice were placed on a high-fat (HF) diet known to induce obesity, hepatic steatosis, and insulin resistance. Tissue profiling of wild-type mice showed high levels of FKBP52 in the liver but little to no expression in muscle or adipose tissue, predicting a restricted pattern of FKBP52 effects on metabolism.

View Article and Find Full Text PDF

Background & Aims: Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 causes hyperinsulinemia and insulin resistance, which result from impaired insulin clearance, in liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice (L-SACC1). These mice also develop steatosis. Because hepatic fat accumulation precedes hepatitis, lipid peroxidation, and apoptosis in the pathogenesis of nonalcoholic steatohepatitis (NASH), we investigated whether a high-fat diet, by causing inflammation, is sufficient to induce hepatitis and other features of NASH in L-SACC1 mice.

View Article and Find Full Text PDF