Premise: Fossils are essential for understanding evolutionary history because they provide direct evidence of past diversity and geographic distributions. However, resolving systematic relationships between fossils and extant taxa, an essential step for many macroevolutionary studies, requires extensive comparative work on morphology and anatomy. While palms (Arecaceae) have an excellent fossil record that includes numerous fossil fruits, many are difficult to identify due in part to limited comparative data on modern fruit structure.
View Article and Find Full Text PDFAngiosperm-dominated floras of the Late Cretaceous are essential for understanding the evolutionary, ecological, and geographic radiation of flowering plants. The Late Cretaceous-early Paleogene Deccan Intertrappean Beds of India contain angiosperm-dominated plant fossil assemblages known from multiple localities in central India. Numerous monocots have been documented from these assemblages, providing a window into an important but poorly understood time in their diversification.
View Article and Find Full Text PDFBackground And Aims: Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms.
View Article and Find Full Text PDFThe Selaginella rhizophore is a unique and enigmatic organ whose homology with roots, shoots, or neither of the two remains unresolved. Nevertheless, rhizophore-like organs have been documented in several fossil lycophytes. Here we test the homology of these organs through comparisons with the architecture of rhizophore vascularization in Selaginella.
View Article and Find Full Text PDFBackground And Aims: The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte.
View Article and Find Full Text PDFPremise Of The Study: Colonists of even the most inhospitable environments, lichens are present in all terrestrial ecosystems. Because of their ecological versatility and ubiquity, they have been considered excellent candidates for early colonizers of terrestrial environments. Despite such predictions, good preservation potential, and the extant diversity of lichenized fungi, the fossil record of lichen associations is sparse.
View Article and Find Full Text PDF