Autophagy
October 2016
Comput Struct Biotechnol J
June 2014
The influence of mitochondria in human health and disease is a rapidly expanding topic in the scientific literature due to their integral roles in cellular death and survival. Mitochondrial biology and alterations in function were first linked to cancer in the 1920s with the discovery of the Warburg effect. The utilization of aerobic glycolysis in ATP synthesis was the first of many observations of metabolic reprogramming in cancer.
View Article and Find Full Text PDFEvasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549) cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis.
View Article and Find Full Text PDFMutations in DJ-1, PINK1 (PTEN-induced putative kinase 1) and parkin all cause recessive parkinsonism in humans, but the relationships between these genes are not clearly defined. One event associated with loss of any of these genes is altered mitochondrial function. Recent evidence suggests that turnover of damaged mitochondria by autophagy might be central to the process of recessive parkinsonism.
View Article and Find Full Text PDFInt J Biochem Cell Biol
October 2009
Mutations in parkin, PTEN-induced kinase 1 (PINK1) and DJ-1 can all cause autosomal recessive forms of Parkinson's disease. Recent data suggest that these recessive parkinsonism-associated genes converge within a single pathogenic pathway whose dysfunction leads to the loss of substantia nigra pars compacta neurons. The major common functional effects of all three genes relate to mitochondrial and oxidative damage, with a possible additional involvement of the ubiquitin proteasome system.
View Article and Find Full Text PDFMutations in the E3 ubiquitin ligase parkin cause early-onset, autosomal-recessive juvenile parkinsonism (AJRP), presumably as a result of a lack of function that alters the level, activity, aggregation or localization of its substrates. Recently, we have reported that phospholipase Cgamma1 is a substrate for parkin. In this article, we show that parkin mutants and siRNA parkin knockdown cells possess enhanced levels of phospholipase Cgamma1 phosphorylation, basal phosphoinositide hydrolysis and intracellular Ca2+ concentration.
View Article and Find Full Text PDFPTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1.
View Article and Find Full Text PDFRecessive mutations in Pink1 lead to a selective degeneration of dopaminergic neurons in the substantia nigra that is characteristic of Parkinson disease. Pink1 is a kinase that is targeted in part to mitochondria, and loss of Pink1 function can alter mitochondrial morphology and dynamics, thus supporting a link between mitochondrial dysfunction and Parkinson disease etiology. Here, we report the unbiased identification and confirmation of a mitochondrial multiprotein complex that contains Pink1, the atypical GTPase Miro, and the adaptor protein Milton.
View Article and Find Full Text PDFObjective: There are marked mitochondrial abnormalities in parkin-knock-out Drosophila and other model systems. The aim of our study was to determine mitochondrial function and morphology in parkin-mutant patients. We also investigated whether pharmacological rescue of impaired mitochondrial function may be possible in parkin-mutant human tissue.
View Article and Find Full Text PDFMutations in the LRRK2 gene, coding for dardarin, cause dominantly inherited Parkinson's disease (PD). Dardarin is a large protein, and mutations are found throughout the gene including the kinase domain. However, it is not clear if kinase activity is important for the damaging effects of pathogenic mutations.
View Article and Find Full Text PDF