The docosahedral metallacarboranes 4,4-(PMe(2)Ph)2-4,1,6-closo-PtC(2)B(10)H(12), 4,4-(PMe(2)Ph)2-4,1,10-closo-PtC(2)B(10)H(12), and [N(PPh(3))2][4,4-cod-4,1,10-closo-RhC(2)B(10)H(12)] were prepared by reduction/metalation of either 1,2-closo-C(2)B(10)H(12) or 1,12-closo-C(2)B(10)H(12). All three species were fully characterized, with a particular point of interest of the latter being the conformation of the {ML2} fragment relative to the carborane ligand face. Comparison with conformations previously established for six other ML(2)C(2)B(10) species of varying heteroatom patterns (4,1,2-MC(2)B(10), 4,1,6-MC(2)B(10), 4,1,10-MC(2)B(10), and 4,1,12-MC(2)B(10)) reveals clear preferences.
View Article and Find Full Text PDFReduction of the tethered carborane 1,2-(CH2)3-1,2-closo-C2B10H10 followed by treatment with CoCl2/NaCp, [(p-cymene)RuCl2]2(p-cymene=C6H4MeiPr-1,4), (PMe2Ph)2PtCl2 or (dppe)NiCl2(dppe=Ph2PCH2CH2PPh2) affords reasonable yields of the new 13-vertex metallacarboranes 1,2-(CH2)3-4-Cp-4,1,2-closo-CoC2B10H10 (1), 1,2-(CH2)3-4-(p-cymene)-4,1,2-closo-RuC2B10H10 (2), 1,2-(CH2)3-4,4-(PMe2Ph)2-4,1,2-closo-PtC2B10H10 (3) and 1,2-(CH2)3-4,4-(dppe)-4,1,2-closo-NiC2B10H10 (4), respectively. All compounds were characterised spectroscopically and crystallographically. The cobalt and ruthenium species 1 and 2 have Cs symmetry in both solution and the solid state, having henicosahedral cage structures featuring a trapezoidal C1C2B9B5 face.
View Article and Find Full Text PDF