Publications by authors named "Kelly Gutpell"

Vascular endothelial growth factor (VEGF) and other pro-angiogenic growth factors have been investigated to enhance muscle tissue perfusion and repair in Duchenne muscular dystrophy (DMD). Current understanding is limited by a lack of functional data following in vivo delivery of these growth factors. We previously used dynamic contrast-enhanced computed tomography to monitor disease progression in murine models of DMD, but no study to date has utilized this imaging technique to assess vascular therapy in a preclinical model of DMD.

View Article and Find Full Text PDF

Treatment with vascular endothelial growth factor (VEGF) to reduce ischemia and enhance both endogenous muscle repair and regenerative cell therapy in Duchenne muscular dystrophy (DMD) has been widely proposed in recent years. However, the interaction between angiogenesis and fibrosis, a hallmark feature of DMD, remains unclear. To date, it has not been determined whether VEGF exerts a pro-fibrotic effect on DMD-derived fibroblasts, which may contribute to further disease progression.

View Article and Find Full Text PDF

Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients.

View Article and Find Full Text PDF

The purpose of this study was to measure changes in cardiac function as cardiomyopathy progresses in a mouse model of Duchenne muscular dystrophy using 3-D ECG-gated echocardiography. This study is the first to correlate cardiac volumes acquired using 3-D echocardiography with those acquired using retrospectively gated micro-computed tomography (CT). Both were further compared with standard M-mode echocardiography and histologic analyses.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD.

View Article and Find Full Text PDF