Psychopharmacology (Berl)
July 2007
Rationale: Data from both preclinical and clinical studies have provided proof of concept that modulation of limbic and forebrain glutamate, via mGlu2/3 receptor agonists, might provide therapeutic benefits in many psychiatric disorders including schizophrenia and anxiety.
Objective: The aim of this study was to assess the efficacy of a structurally novel, potent, selective mGlu2/3 receptor agonist with improved bioavailability (LY404039) in animal models predictive of antipsychotic and anxiolytic efficacy.
Materials And Methods: LY404039 was assessed in amphetamine- and phencyclidine-induced hyperlocomotion, conditioned avoidance responding, fear-potentiated startle, marble burying, and rotarod behavioral tests.
The asymmetric synthesis and biological activity of (2S,1'S,2'R,3'R)-2-(2'-carboxy-3'-hydroxymethylcyclopropyl) glycine ((+)-3) is described. This novel C-3' substituted carboxy cyclopropyl glycine is a highly potent group 2 and group 3 mGluR agonist that has proven to be orally active in both fear potentiated startle (animal model for anxiety) and PCP-induced motor activation (animal model for psychosis) assays in rats.
View Article and Find Full Text PDFA series of novel group I metabotropic glutamate receptor (mGlu) antagonists have been designed on the basis of the 4-carboxyphenylglycine pharmacophore. The compounds are either mGlu1 receptor selective or equipotent for both mGlu1 and mGlu5 receptors and have IC(50) values ranging from 1 to 30 microM determined by phosphoinositide hydrolysis (PI) assay in vitro. All the compounds produced dose-dependent inhibition of group I mGlu receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG)-induced limbic seizure responses in mice with ED(50) values ranging from 9 nmol for LY393053 to 138 nmol for LY339840 after intracerebroventricular injection and were more potent than the mGlu1 receptor antagonist 1-aminoindan-1,5-dicarboxylic acid (ED(50)=477 nmol).
View Article and Find Full Text PDFThe fear-potentiated startle paradigm has been characterized for drugs that act via ionotropic (NMDA and AMPA/kainate receptor) glutamate receptor mechanisms. Previous studies have shown that the potent systemically active mGlu2/3 receptor agonist, LY354740, effectively reduced the expression of fear-potentiated startle responses in rats. The present study examined the effects of LY354740 in a pre- versus post-fear conditioning paradigm and compared the effects to diazepam.
View Article and Find Full Text PDF