High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS.
View Article and Find Full Text PDFPurpose: The authors used the National Institutes of Health (NIH) RePORTER (Research Portfolio Online Reporting Tools) to evaluate funding trends and historic NIH investment increase in the K99 award pathway and examine whether R00 to R01 or R21 achievement time correlated with the future success of an early-stage NIH-funded investigator.
Method: All K99 awards and funding data in this study were limited to all clinical departments. The authors identified all researchers and awards through a K99 search from fiscal years (FYs) 2007 to 2022 across all clinical departments and investigated trends in K99 awards and funding from NIH FYs 2007 to 2022.
Importance: Early-stage and established investigators compete for a limited supply of funds from the National Institutes of Health (NIH). Regardless of their previous funding success, many principal investigators (PIs) encounter a funding gap in which they no longer receive ongoing funding from the NIH.
Objective: To determine incidence rates of PI-level funding gaps, the mean funding gap length, and whether these 2 metrics are associated with previous funding success.
Objective: The objective of this study was to analyze the different brain oxygen metabolism statuses in preeclampsia using magnetic resonance imaging and investigate the factors that affect cerebral oxygen metabolism in preeclampsia.
Materials And Methods: Forty-nine women with preeclampsia (mean age 32.4 years; range, 18-44 years), 22 pregnant healthy controls (PHCs) (mean age 30.
Background: Microstructural changes in deep gray matter (DGM) nuclei are related to physiological behavior, cognition, and memory. Therefore, it is critical to study age-dependent trajectories of biomarkers in DGM nuclei for understanding brain development and aging, as well as predicting cognitive or neurodegenerative diseases.
Objectives: We aimed to (1) characterize age-dependent trajectories of mean susceptibility, adjusted volume, and total iron content simultaneously in DGM nuclei using quantitative susceptibility mapping (QSM); (2) examine potential contributions of sex related effects to the different age-dependence trajectories of volume and iron deposition; and (3) evaluate the ability of brain age prediction by combining mean magnetic susceptibility and volume of DGM nuclei.
Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor deficits in advanced Parkinson's disease (PD) patients, but the degree of motor improvement varies across individuals. PD pathology involves the changes of iron spatial distribution in the deep gray matter nuclei.
Purpose: To explore the relationship between the iron spatial distribution and motor improvement among PD patients who underwent STN-DBS surgery in three regions: substantia nigra (SN), STN, and dentate nucleus (DN).
Purpose: Accurate identification of nodal status enables adequate neck irradiation for nasopharyngeal carcinoma (NPC). However, most conventional techniques are unable to pick up occult metastases, leading to underestimation of tumor extensions. Here we investigate the clinical significance of carbonic anhydrase IX (CAIX) in human NPC samples, and develop a CAIX-targeted imaging strategy to identify occult lymph node metastases (LNMs) and extranodal extension (ENE) in animal studies.
View Article and Find Full Text PDFQuantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g.
View Article and Find Full Text PDFBackground And Purpose: The objective is to demonstrate feasibility of separating magnetic sources in quantitative susceptibility mapping (QSM) by incorporating magnitude decay rates in gradient echo (GRE) MRI.
Methods: Magnetic susceptibility source separation was developed using and compared with a prior method using that required an additional sequence to measure the transverse relaxation rate R . Both susceptibility separation methods were compared in multiple sclerosis (MS) patients (n = 17).
Objectives: The objective of this study was to compare oxygen extraction fraction (OEF) values in the deep gray matter (GM) of pre-eclampsia (PE) patients, pregnant healthy controls (PHCs), and non-pregnant healthy controls (NPHCs) to explore their brain oxygen metabolism differences in GM.
Methods: Forty-seven PE patients, forty NPHCs, and twenty-one PHCs were included. Brain OEF values were computed from quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level-dependent magnitude (QSM + qBOLD = QQ)-based mapping.
Background: Accurate delineation of the midbrain nuclei, the red nucleus (RN), substantia nigra (SN) and subthalamic nucleus (STN), is important in neuroimaging studies of neurodegenerative and other diseases. This study aims to segment midbrain structures in high-resolution susceptibility maps using a method based on a convolutional neural network (CNN).
Methods: The susceptibility maps of 75 subjects were acquired with a voxel size of 0.
Background And Purpose: Excessive brain iron deposition is involved in Parkinson's disease (PD) pathogenesis. However, the correlation of iron accumulation in various brain nuclei is not well-established in different stages of the disease. This cross-sectional study aims to evaluate quantitative susceptibility mapping (QSM) as an imaging technique to measure brain iron accumulation in PD patients in different stages compared to healthy controls.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
February 2022
We aimed to demonstrate the feasibility of whole brain oxygen extraction fraction (OEF) mapping for measuring lesion specific and regional OEF abnormalities in multiple sclerosis (MS) patients. In 22 MS patients and 11 healthy controls (HC), OEF and neural tissue susceptibility () maps were computed from MRI multi-echo gradient echo data. In MS patients, 80 chronic active lesions with hyperintense rim on quantitative susceptibility mapping were identified, and the mean OEF and within the rim and core were compared using linear mixed-effect model analysis.
View Article and Find Full Text PDFBackground: Noninvasive methods for the early diagnosis and staging of hepatic fibrosis are needed. The present study aimed to investigate the alteration of magnetic susceptibility in the liver of patients with various fibrosis stages and to evaluate the feasibility of using susceptibility to stage hepatic fibrosis.
Methods: A total of 30 consecutive patients with chronic liver diseases (CLDs) underwent magnetic resonance imaging (MRI) and liver biopsy evaluation of hepatic fibrosis, necroinflammatory activity, iron load, and steatosis.
Ann Clin Transl Neurol
April 2021
Background: Inflammation in chronic active lesions occurs behind a closed blood-brain barrier and cannot be detected with MRI. Activated microglia are highly enriched for iron and can be visualized with quantitative susceptibility mapping (QSM), an MRI technique used to delineate iron.
Objective: To characterize the histopathological correlates of different QSM hyperintensity patterns in MS lesions.
Background: Currently, no study has evaluated metal accumulation in the brains of patients with Wilson's disease by using quantitative susceptibility mapping at 3T MRI. The objectives of this study were to qualitatively and quantitatively evaluate changes in magnetic susceptibility and R2* maps in deep gray matter nuclei to discriminate Wilson's disease patients from healthy controls and to evaluate their sensitivities in diagnosing Wilson's disease.
Methods: Magnetic susceptibility and R2* maps and conventional T1-weighted, T2-weighted, and T2-weighted fluid-attenuated inversion recovery images were obtained from 17 Wilson's disease patients and 14 age-matched healthy controls on a 3T MRI scanner.
Purpose: To develop a nonlinear preconditioned total field-inversion algorithm using the MEDI toolbox (MEDInpt) for robust QSM of carotid plaques and evaluate its performance in comparison with a local field-inversion algorithm (STI Suite) previously applied to carotid QSM.
Methods: Numerical simulation and in vivo carotid QSM were performed to compare the MEDInpt and STI Suite algorithms. Multicontrast MRI was used as the reference standard for detecting calcified plaque and intraplaque hemorrhage (IPH).
The use of magnetic fluid hyperthermia (MFH) for cancer therapy has shown promise but lacks suitable methods for quantifying exogenous irons such as superparamagnetic iron oxide (SPIO) nanoparticles as a source of heat generation under an alternating magnetic field (AMF). Application of quantitative susceptibility mapping (QSM) technique to prediction of SPIO in preclinical models has been challenging due to a large variation of susceptibility values, chemical shift from tissue fat, and noisier data arising from the higher resolution required to visualize the anatomy of small animals. In this study, we developed a robust QSM for the SPIO ferumoxytol in live mice to examine its potential application in MFH for cancer therapy.
View Article and Find Full Text PDFPurpose: To examine the feasibility of MR diffusion kurtosis imaging (DKI) for characterizing nonalcoholic fatty liver disease (NAFLD) and diagnosing nonalcoholic steatohepatitis (NASH).
Methods: Thirty-two rabbits on high fat diet with different severities of NAFLD were imaged at 3 T MR including diffusion weighted imaging (DWI) and DKI using b values of 0, 400, 800 s/mm with 15 diffusion directions at each b value. Apparent diffusion coefficient (ADC) was derived from the linear exponential DWI model.
Quantitative susceptibility mapping (QSM) of human spinal vertebrae from a multi-echo gradient-echo (GRE) sequence is challenging, because comparable amounts of fat and water in the vertebrae make it difficult to solve the nonconvex optimization problem of fat-water separation (R2*-IDEAL) for estimating the magnetic field induced by tissue susceptibility. We present an in-phase (IP) echo initialization of R2*-IDEAL for QSM in the spinal vertebrae. Ten healthy human subjects were recruited for spine MRI.
View Article and Find Full Text PDFPurpose: To evaluate the quality of brain quantitative susceptibility mapping (QSM) that is fully automatically reconstructed in clinical MRI of various neurological diseases.
Methods: 393 consecutive patients in one month were recruited for this evaluation study. QSM was reconstructed using Morphology Enabled Dipole Inversion without zero reference regularization (MEDI) and using MEDI with cerebrospinal fluid automatic zero-reference regularization to generate susceptibility values (MEDI+0).
Iron accumulation in the substantia nigra (SN) is spatially heterogeneous, yet no study has quantitatively evaluated how the texture of quantitative susceptibility maps (QSM) and R2 might evolve with Parkinson's disease (PD) and healthy controls (HC). The aim of this study was to discriminate between patients with PD and HC using texture analysis in the SN from QSM and R2 maps. QSM and R2 maps were obtained from 28 PD patients and 28 HC on a clinical 3T MR imaging scanner using 3D multi-echo gradient-echo sequence.
View Article and Find Full Text PDFChronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation.
View Article and Find Full Text PDFThe purpose of this study is to determine the effects of high cumulative doses of ultra-small paramagnetic iron oxide (USPIO) used in neuroimaging studies. We intravenously administered 8 mg/kg of 2 USPIO compounds daily for 4 wk to male Sprague-Dawley rats (Crl:SD). Multiecho gradient-echo MRI, serum iron levels, and histology were performed at the end of dosing and after a 7-d washout period.
View Article and Find Full Text PDFBackground: A challenge for R2 and R2* methods in measuring liver iron concentration (LIC) is that fibrosis, fat, and other hepatic cellular pathology contribute to R2 and R2* and interfere with LIC estimation.
Purpose: To examine the interfering effects of fibrosis, fat, and other lesions on R2* LIC estimation and to use quantitative susceptibility mapping (QSM) to reduce these distortions.
Study Type: Prospective.