The bacterial cell-division protein FtsZ has been a promising antibiotic target for over a decade now, but there is still a need for more work in this area. So far there are no FtsZ targeting drugs commercially available. We have analyzed a wide variety of prospective drugs and their interactions with multiple FtsZ species using both free and directed docking simulations.
View Article and Find Full Text PDFWith antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors.
View Article and Find Full Text PDFThe regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding.
View Article and Find Full Text PDFThe titin-telethonin complex, essential for anchoring filaments in the Z-disk of the sarcomere, is composed of immunoglobulin domains. Surprisingly, atomic force microscopy experiments showed that it resists forces much higher than the typical immunoglobulin domain and that the force distribution is unusually broad. To investigate the origin of this behavior, we developed a multiscale simulation approach, combining minimalist and atomistic models (SOP-AT).
View Article and Find Full Text PDFMicrotubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment.
View Article and Find Full Text PDFWe investigate the mechanical behavior of microtubule (MT) protofilaments under the action of bending forces, ramped up linearly in time, to provide insight into the severing of MTs by microtubule associated proteins (MAPs). We used the self-organized polymer model which employs a coarse-grained description of the protein chain and ran Brownian dynamics simulations accelerated on graphics processing units that allow us to follow the dynamics of a MT system on experimental timescales. Our study focused on the role played in the MT depolymerization dynamics by the inter-tubulin contacts a protofilament experiences when embedded in the MT lattice, and the number of binding sites of MAPs on MTs.
View Article and Find Full Text PDFLarge-size biomolecular systems that spontaneously assemble, disassemble, and self-repair by controlled inputs play fundamental roles in biology. Microtubules (MTs), which play important roles in cell adhesion and cell division, are a prime example. MTs serve as ″tracks″ for molecular motors, and their biomechanical functions depend on dynamic instability-a stochastic switching between periods of rapid growing and shrinking.
View Article and Find Full Text PDF