In our drug discovery campaigns to target the oncogenic drivers of cancers, the demand for a chemoselective, stereoselective and economical synthesis of chiral benzylamines drove the development of a catalytic zirconium hydride reduction. This methodology uses the inexpensive, bench stable zirconocene dichloride, and a novel tetrabutylammonium fluoride activation tactic to catalytically generate a metal hydride under ambient conditions. The diastereo- and chemoselectivity of this reaction was tested with the preparation of key intermediates from our discovery programs and in the scope of sulfinyl ketimines and carbonyls relevant to medicinal chemistry and natural product synthesis.
View Article and Find Full Text PDFThe H1047R mutation of is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3Kα over PI3Kα is crucial due to the role that PI3Kα plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3Kα-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage.
View Article and Find Full Text PDFChiral amine synthesis remains a significant challenge in accelerating the design cycle of drug discovery programs. A zirconium hydride, due to its high oxophilicity and lower reactivity, gave highly chemo- and stereoselective reductions of sulfinyl ketimines. The development of this zirconocene-mediated reduction helped to accelerate our drug discovery efforts and is applicable to several motifs commonly used in medicinal chemistry.
View Article and Find Full Text PDFSOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest.
View Article and Find Full Text PDF