Mechanomyography is currently the accepted laboratory reference standard for quantitative neuromuscular blockade monitoring. Mechanomyographs are not commercially available. Previously, a mechanomyograph was built by our laboratory and used in several clinical studies.
View Article and Find Full Text PDFBackground: The accuracy and precision of currently available, widely used acceleromyograph and electromyograph neuromuscular blockade monitors have not been well studied. In addition, the normalization of the train-of-four ratio from acceleromyography (train-of-four ratio [T4/T1] divided by the baseline train-of-four ratio) has not been validated in comparison to mechanomyography.
Methods: Enrolled patients had surgery under general anesthesia with a supraglottic airway and without any neuromuscular blocking drugs.
Background: Mechanomyography is the traditional gold standard research technique for quantitative assessment of neuromuscular blockade. Mechanomyography directly measures the isometric force generated by the thumb in response to ulnar nerve stimulation. Researchers must construct their own mechanomyographs since commercial instruments are no longer available.
View Article and Find Full Text PDFBackground: The dose of sugammadex recommended by the manufacturer for reversal of rocuronium is 2 mg/kg when the train-of-four count is 2 or more and 4 mg/kg when it is less than 2 but there is a posttetanic count of at least 1. The purpose of this dose-finding study was to titrate sugammadex to produce a train-of-four ratio 0.9 or greater at the conclusion of cardiac surgery, and to continue monitoring neuromuscular blockade in the intensive care unit to identify recurrent paralysis.
View Article and Find Full Text PDFBackground: In the intensive care unit (ICU), extubation failure has been associated with greater resource utilization and worsened clinical outcomes. Most recently, nighttime extubation (NTE) has been reported as a risk factor for increased ICU and hospital mortality. We hypothesized that, in a large, urban, university-affiliated hospital with multidisciplinary assessment for extubation, rigorously protocolized extubation algorithms, and expert airway managers available at all times of day for assessment of high-risk extubations, NTE would not confer additional risk of adverse clinical outcomes.
View Article and Find Full Text PDFOptically derived tissue properties across a range of breast densities and the effects of breast compression on estimates of hemoglobin, oxygen metabolism, and water and lipid concentrations were obtained from a coregistered imaging system that integrates near-infrared spectral tomography (NIRST) with digital breast tomosynthesis (DBT). Image data were analyzed from 27 women who underwent four IRB approved NIRST/DBT exams that included fully and mildly compressed breast acquisitions in two projections—craniocaudal (CC) and mediolateral-oblique (MLO)—and generated four data sets per patient (full and moderate compression in CC and MLO views). Breast density was correlated with HbT (r=0.
View Article and Find Full Text PDFCalibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth.
View Article and Find Full Text PDFA multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined.
View Article and Find Full Text PDFIn this study, data from breast MRI-guided near infrared spectroscopy (NIRS) exams delivered to 44 patients scheduled for surgical resection (ending in 16 benign and 28 malignant diagnoses) were analyzed using a spatial sensitivity metric to quantify the adequacy of the optical measurements for interrogating the tumor region of interest, as derived from the concurrent MRI scan. Along with positional sensitivity, the incorporation of spectral priors and the selection of an appropriate regularization parameter in the image reconstruction were considered, and found to influence the diagnostic accuracy of the recovered images. Once optimized, the MRI/NIRS data was able to differentiate the malignant from benign lesions through both total hemoglobin (p = 0.
View Article and Find Full Text PDFBreast mimicking tissue optical phantoms with sufficient structural integrity to be deployed as stand-alone imaging targets are developed and successfully constructed with biologically relevant concentrations of water, lipid, and blood. The results show excellent material homogeneity and reproducibility with inter- and intraphantom variability of 3.5 and 3.
View Article and Find Full Text PDFThe dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively.
View Article and Find Full Text PDFA Near Infrared Spectral Tomography (NIRST) system has been developed and integrated into a commercial Digital Breast Tomosynthesis (DBT) scanner to allow structural and functional imaging of breast in vivo. The NIRST instrument uses an 8-wavelength continuous wave (CW) laser-based scanning source assembly and a 75-element silicon photodiode solid-state detector panel to produce dense spectral and spatial projection data from which spectrally constrained 3D tomographic images of tissue chromophores are produced. Integration of the optical imaging system into the DBT scanner allows direct co-registration of the optical and DBT images, while also facilitating the synergistic use of x-ray contrast as anatomical priors in optical image reconstruction.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2012
Digital breast tomosynthesis (DBT) is a limited-angle tomographic x-ray imaging technique that reduces the effect of tissue superposition observed in planar mammography. An integrated imaging platform that combines DBT with near infrared spectroscopy (NIRS) to provide co-registered anatomical and functional imaging is under development. Incorporation of anatomic priors can benefit NIRS reconstruction.
View Article and Find Full Text PDF