The Notch pathway plays diverse and complex roles in cell signaling during development. In the mammalian ovary, Notch is important for the initial formation and growth of follicles, and for regulating the proliferation and differentiation of follicular granulosa cells during the periovulatory period. This study seeks to determine the contribution of female germ cells toward the initial activation and subsequent maintenance of Notch signaling within somatic granulosa cells of the ovary.
View Article and Find Full Text PDFThe Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary.
View Article and Find Full Text PDFThe Notch pathway is a contact-dependent, or juxtacrine, signaling system that is conserved in metazoan organisms and is important in many developmental processes. Recent investigations have demonstrated that the Notch pathway is active in both the embryonic and postnatal ovary and plays important roles in events including follicle assembly and growth, meiotic maturation, ovarian vasculogenesis and steroid hormone production. In mice, disruption of the Notch pathway results in ovarian pathologies affecting meiotic spindle assembly, follicle histogenesis, granulosa cell proliferation and survival, corpora luteal function and ovarian neovascularization.
View Article and Find Full Text PDFOriginally, activins were identified as stimulators of FSH release in reproduction. Other activities, including secondary axis formation in development, have since been revealed. Here, we investigated the influence of activin βA on the body, including the gastro-intestinal (GI) tract.
View Article and Find Full Text PDFWhen it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis.
View Article and Find Full Text PDFOvarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstrate that Notch signaling is active within somatic cells of the embryonic ovary, and these cells undergo dramatic reorganization during follicle histogenesis.
View Article and Find Full Text PDFBasic leucine zipper (bZip) transcription factors regulate cellular gene expression in response to a variety of extracellular signals and nutrient cues. Although the bZip domain is widely known to play significant roles in DNA binding and dimerization, recent studies point to an additional role for this motif in the recruitment of the transcriptional apparatus. For example, the cAMP response element binding protein (CREB)-regulated transcriptional coactivator (CRTC) family of transcriptional coactivators has been proposed to promote the expression of calcium and cAMP responsive genes, by binding to the CREB bZip in response to extracellular signals.
View Article and Find Full Text PDFThe transition from follicle to corpus luteum after ovulation is associated with profound morphological and functional changes and is accompanied by corresponding changes in gene expression. The gene encoding the α subunit of the dimeric reproductive hormone inhibin is maximally expressed in the granulosa cells of the preovulatory follicle, is rapidly repressed by the ovulatory LH surge, and is expressed at only very low levels in the corpus luteum. Although previous studies have identified transient repressors of inhibin α gene transcription, little is known about how this repression is maintained in the corpus luteum.
View Article and Find Full Text PDFNuclear receptor transcriptional activity is enhanced by interaction with coactivators. The highly related nuclear receptor 5A (NR5A) subfamily members liver receptor homolog 1 and steroidogenic factor 1 bind to and activate several of the same genes, many of which are important for reproductive function. To better understand transcriptional activation by these nuclear receptors, we sought to identify interacting proteins that might function as coactivators.
View Article and Find Full Text PDFActivin, a member of the TGF-β superfamily, is an important modulator of FSH synthesis and secretion and is involved in reproductive dysfunctions and cancers. It also regulates ovarian follicle development. To understand the mechanisms and pathways by which activin regulates follicle function, we performed a microarray study and identified 240 activin regulated genes in mouse granulosa cells.
View Article and Find Full Text PDFMethods Mol Biol
January 2010
Use of reporter genes provides a convenient way to study the activity and regulation of promoters and examine the rate and control of gene transcription. Many reporter genes and transfection methods can be efficiently used for this purpose. To investigate gene regulation and signaling pathway interactions during ovarian follicle development, we have examined promoter activities of several key follicle-regulating genes in the mouse ovary.
View Article and Find Full Text PDFThe murine primordial follicle pool develops largely within 3 days after birth through germline nest breakdown and enclosure of oocytes within pregranulosa cells. The mechanisms that trigger primordial follicle formation likely are influenced by a transition from the maternal to fetal hormonal milieu at the time of birth. High levels of maternal estrogen maintain intact germline nest in fetal ovary, and decrease of estrogen after birth is permissive of follicle formation.
View Article and Find Full Text PDFPrimordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve.
View Article and Find Full Text PDFActivins are pleiotropic members of the TGFbeta superfamily and were initially characterized based on their abilities to stimulate FSH synthesis and secretion by gonadotrope cells of the anterior pituitary gland. Here, we identified the gene encoding the steroidogenic enzyme, 17beta-hydroxysteroid dehydrogenase type I (17beta-HSD1; Hsd17b1), as an activin-responsive gene in immortalized gonadotrope cells, LbetaT2. 17beta-HSD1 catalyzes the conversion of estrone to the more active 17beta-estradiol, and activin A stimulated an increase in this enzymatic activity in these cells.
View Article and Find Full Text PDFBackground: The TGF-beta family protein activin has numerous reported activities with some uncertainty in the reproductive axis and development. The precise roles of activin in in vivo system were investigated using a transient gain of function model.
Methods: To this end, an expression plasmid, pCMV-rAct, with the activin betaA cDNA fused to the cytomegalovirus promoter, was introduced into muscle of the female adult mice by direct injection.
Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differentiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated how Notch signaling might influence the formation of primordial follicles.
View Article and Find Full Text PDFActivin, a member of the transforming growth factor-beta superfamily, is an important modulator of follicle-stimulating hormone synthesis and secretion in the pituitary and plays autocrine/paracrine roles in the regulation of ovarian follicle development. From a microarray study on mouse ovarian granulosa cells, we discovered that the estrogen receptor beta (ERbeta) is inducible by activin. We previously demonstrated that estrogen suppresses activin gene expression, suggesting a feedback relationship between these two follicle-regulating hormones.
View Article and Find Full Text PDFThe GHRH receptor is expressed in the somatotroph cell of the anterior pituitary, where it functions to mediate GHRH-stimulated GH release. To study pituitary and somatotroph cell-specific expression of this gene, a transgenic mouse model and complementary cell culture experiments were developed. The activity of the 1.
View Article and Find Full Text PDFChronic ovulation as a contributing factor for the development of epithelial ovarian cancer in women has long been an outstanding hypothesis. To test the incessant ovulation hypothesis, mice were superovulated using weekly ip injections of pregnant mare serum gonadotropin (5 IU/animal), followed 48 h later by human chorionic gonadotropin (5 IU/animal). Wild-type CD1 mice were used along with CD1 mice expressing a Smad2 dominant-negative (Smad2DN) transgene under the control of the Müllerian inhibiting substance promoter that targets expression to the ovary and enhances cyst formation.
View Article and Find Full Text PDFIn the ovary, the steroid hormone estrogen and the TGF-beta superfamily member activin are both produced by granulosa cells and they both have intraovarian functions. Emerging evidence has indicated an interaction of these two signaling pathways. Based on the fact that estrogen and activin can impact early follicle formation and development, we hypothesize that estrogen treatment may alter activin signaling in the neonatal ovary.
View Article and Find Full Text PDFThe mechanisms and physiology of reproductive function have fascinated scientists throughout time. Recent cellular and molecular level structural studies have provided unprecedented insights into reproductive systems and signaling networks. This 'cutting edge' editorial provides a recent example in each of these areas, namely, the anatomical integrity of the follicle, the molecular structure of activin with its binding partners and the molecular regulation of inhibin.
View Article and Find Full Text PDFMammalian females enter puberty with follicular reserves that exceed the number needed for ovulation during a single lifetime. Follicular depletion occurs throughout reproductive life and ends in menopause, or reproductive senescence, when the follicle pool is exhausted. The mechanisms regulating the production of a species-specific initial follicle pool are not well understood.
View Article and Find Full Text PDFThe importance of the initial follicle pool in fertility in female adult mammals has recently been debated. Utilizing a mathematical model of the dynamics of follicle progression (primordial to primary to secondary), we examined whether the initial follicle pool is sufficient for adult fertility through reproductive senescence in CD1 mice. Follicles in each stage were counted from postnatal day 6 through 12 months and data were fit to a series of first-order differential equations representing two mechanisms: an initial pool of primordial follicles as the only follicle source (fixed pool model), or an initial primordial follicle pool supplemented by germline stem cells (stem cell model).
View Article and Find Full Text PDFThe ovarian surface epithelium (OSE) is a monolayer of cells that surround the ovary and accommodate repeated tear and repair in response to ovulation. OSE cells are thought to be the progenitors of 90% of ovarian cancers. Currently, the total amount of proliferation of the OSE has not been reported in response to one ovulatory event.
View Article and Find Full Text PDFThe inhibin alpha-subunit gene is transcriptionally activated by FSH in ovarian granulosa cells during follicular growth. We have investigated the roles of the NR5A family nuclear receptors steroidogenic factor 1 (SF-1) and liver receptor homolog 1 (LRH-1) in transcriptional activation of the inhibin alpha-subunit gene. Transfection assays using an inhibin alpha-subunit promoter reporter in GRMO2 granulosa cells show that LRH-1 and SF-1 act similarly to increase promoter activity, and that the activity of both transcription factors is augmented by the coactivators cAMP response element-binding protein-binding protein and steroid receptor coactivator 1.
View Article and Find Full Text PDF