Publications by authors named "Kelly E Fletcher"

Dehalococcoides mccartyi strains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel slices and subsequent identification of proteins in gel slices using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Thermal treatment is capable of removing significant free-phase chlorinated solvent mass while potentially enhancing bioremediation effectiveness by establishing temperature gradients in the perimeter of the source zone and by increasing electron donor availability. The objectives of this study were to determine the potential for enhanced reductive dechlorination activity at the intermediate temperatures that establish in the perimeter of the heated source zone, and to evaluate the effect of electron donor competition on the performance of the microbial reductive dechlorination process. Microcosms, constructed with tetrachloroethene- (PCE-) and trichloroethene- (TCE-) impacted soils from the Great Lakes, IL, and Ft.

View Article and Find Full Text PDF

Reduction of U(VI) to U(IV) as the result of direct or indirect microbial activity is currently being explored for in situ remediation of subsurface U plumes, under the assumption that U(IV) solubility is controlled by the low-solubility mineral uraninite (U(IV)-dioxide). However, recent characterizations of U in sediments from biostimulated field sites, as well as laboratory U(VI) bioreduction studies, report on the formation of U(IV) species that lack the U═O(2)═U coordination of uraninite, suggesting that phases other than uraninite may be controlling U(IV) solubility in environments with complexing surfaces and ligands. To determine the controls on the formation of such nonuraninite U(IV) species, the current work studied the reduction of carbonate-complexed U(VI) by (1) five Gram-positive Desulfitobacterium strains, (2) the Gram-negative bacteria Anaeromyxobacter dehalogenans 2CP-C and Shewanella putrefaciens CN32, and (3) chemically reduced 9,10-anthrahydroquinone-2,6-disulfonate (AH(2)QDS, a soluble reductant).

View Article and Find Full Text PDF

Compound-specific stable isotope analysis (CSIA) is a promising tool for monitoring in situ microbial activity, and enrichment factors (ε values) determined using CSIA can be employed to estimate compound transformation. Although ε values for some dechlorination reactions catalyzed by Dehalococcoides (Dhc) have been reported, reproducibility between independent experiments, variability between different Dhc strains, and congruency between pure and mixed cultures are unknown. In experiments conducted with pure cultures of Dhc sp.

View Article and Find Full Text PDF

Coupling thermal treatment with microbial reductive dechlorination is a promising remedy for tetrachloroethene (PCE) and trichloroethene (TCE) contaminated source zones. Laboratory experiments evaluated Dehalococcoides (Dhc) dechlorination performance, viability, and biomarker gene (DNA) and transcript (mRNA) abundances during exposure to elevated temperatures. The PCE-dechlorinating consortia BDI and OW produced ethene when incubated at temperatures of 30 °C, but vinyl chloride (VC) accumulated when cultures were incubated at 35 or 40 °C.

View Article and Find Full Text PDF

The bioreduction of U(VI) to U(IV) affects uranium mobility and fate in contaminated subsurface environments and is best understood in Gram-negative model organisms such as Geobacter and Shewanella spp. This study demonstrates that U(VI) reduction is a common trait of Gram-positive Desulfitobacterium spp. Five different Desulfitobacterium isolates reduced 100 microM U(VI) to U(IV) in <10 days, whereas U(VI) remained soluble in abiotic and heat-killed controls.

View Article and Find Full Text PDF

The isotope fractionation of 1,2-dichloropropane (1,2-D) during dichloroelimination to propene by Dehalococcoides populations was explored in laboratory experiments in order to provide data for the characterization of the fate of 1,2-D in heterogeneous subsurface systems. Compound specific stable carbon isotope analysis (CSIA) was used to determine the bulk enrichment factors (epsilonbulk), reactive position specific enrichment factors (epsilonreactive), and apparent kinetic isotope effect (AKIE) values for 1,2-D dichloroelimination in two distinct Dehalococcoides-containing cultures. The epsilonbulk factors calculated in the two cultures were statistically identical, -10.

View Article and Find Full Text PDF

This study explores the transformation of trichloroethene (TCE) caused by heating contaminated soil and groundwater samples obtained from the East Gate Disposal Yard (EGDY) located in Fort Lewis, WA. After field samples transferring into glass ampules and introducing 1.5 micromol of TCE, the sealed ampules were incubated at temperatures of 25, 50, and 95 degrees C for periods of up to 95.

View Article and Find Full Text PDF

Clostridium bifermentans strain DPH-1 reportedly dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene. Cultivation-based approaches resolved the DPH-1 culture into two populations: a nondechlorinating Clostridium sp. and PCE-dechlorinating Desulfitobacterium hafniense strain JH1.

View Article and Find Full Text PDF

Geobacter lovleyi strain SZ reduces hexavalent uranium, U(VI), to U(IV) and is the first member of the metal-reducing Geobacter group capable of using tetrachloroethene (PCE) as a growth-supporting electron acceptor. Direct and nested PCR with specific 16S rRNA gene-targeted primer pairs distinguished strain SZ from other known chlorinated ethene-dechlorinating bacteria and closely related Geobacter isolates, including its closest cultured relative, G. thiogenes.

View Article and Find Full Text PDF

A bacterial isolate, designated strain SZ, was obtained from noncontaminated creek sediment microcosms based on its ability to derive energy from acetate oxidation coupled to tetrachloroethene (PCE)-to-cis-1,2-dichloroethene (cis-DCE) dechlorination (i.e., chlororespiration).

View Article and Find Full Text PDF