Flaviviruses are a major health concern because over half of the world population is at risk of infection and there are very few antiviral therapeutics to treat diseases resulting from infection. Replication is an essential part of the flavivirus survival. One of the viral proteins, NS3 helicase, is critical for unwinding the double stranded RNA intermediate during flaviviral replication.
View Article and Find Full Text PDFThe unwinding of double-stranded RNA intermediates is critical for the replication and packaging of flavivirus RNA genomes. This unwinding activity is achieved by the ATP-dependent nonstructural protein 3 (NS3) helicase. In previous studies, we investigated the mechanism of energy transduction between the ATP and RNA binding pockets using molecular dynamics simulations and enzymatic characterization.
View Article and Find Full Text PDFThe unwinding of dsRNA intermediates is critical for the replication of flavivirus RNA genomes. This activity is provided by the C-terminal helicase domain of viral nonstructural protein 3 (NS3). As a member of the superfamily 2 (SF2) helicases, NS3 requires the binding and hydrolysis of ATP/NTP to translocate along and unwind double-stranded nucleic acids.
View Article and Find Full Text PDFHuman BST-2/tetherin is a host factor that inhibits the release of enveloped viruses, including HIV-1, HIV-2, and SIV, from the cell surface by tethering viruses to the host cell membrane. BST-2 has an α-helical ectodomain that forms disulfide-linked dimers between two monomers forming a coiled coil. The ectodomain contains three cysteine residues that can participate in disulfide bond formation and are critical for viral tethering.
View Article and Find Full Text PDFThe deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM.
View Article and Find Full Text PDFBST-2/tetherin is a cellular host factor capable of restricting the release of a variety of enveloped viruses, including HIV-1. Structurally, BST-2 consists of an N-terminal cytoplasmic domain, a transmembrane domain, an ectodomain, and a C-terminal membrane anchor. The BST-2 ectodomain encodes three cysteine residues in its N-terminal half, each of which can contribute to the formation of cysteine-linked dimers.
View Article and Find Full Text PDF