Objective: To evaluate the substitution of Acute Physiology and Chronic Health Evaluation II (APACHE II) by Simplified Acute Physiology Score 3 (SAPS 3) as a severity marker in the modified version of the NUTrition RIsk in the Critically ill score (mNUTRIC); without interleukin 6) based on an analysis of its discriminative ability for in-hospital mortality prediction.
Methods: This retrospective cohort study evaluated 1,516 adult patients admitted to an intensive care unit of a private general hospital from April 2017 to January 2018. Performance evaluation included Fleiss' Kappa and Pearson correlation analysis.
The effects of non-nutritive sweeteners (NNS) on the gut microbiota are an area of increasing research interest due to their potential influence on weight gain, insulin resistance, and inflammation. Studies have shown that mice and rats fed saccharin develop weight gain and metabolic alterations, possibly related to changes in gut microbiota. Here, we hypothesized that chronic exposure to a commercial NNS would change the gut microbiota composition in Wistar rats when compared to sucrose exposure.
View Article and Find Full Text PDFBackground: Non-nutritive sweeteners (NNS) have been associated with increased prevalence of obesity. In previous studies, we demonstrated that saccharin could induce an increase in weight gain either when compared to sucrose or to a non-sweetened control at a similar total caloric intake. These data raised the hypothesis that reduced energy expenditure (EE) could be a potential mechanism explaining greater weight gain with saccharin use in rats.
View Article and Find Full Text PDFObjective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week.
View Article and Find Full Text PDFIn a previous study, we showed that saccharin can induce weight gain when compared with sucrose in Wistar rats despite similar total caloric intake. We now question whether it could be due to the sweet taste of saccharin per se. We also aimed to address if this weight gain is associated with insulin-resistance and to increases in gut peptides such as leptin and PYY in the fasting state.
View Article and Find Full Text PDFObjective: The objective of this study was to evaluate the association between insulin-resistance and fasting levels of ghrelin and PYY in Wistar rats.
Materials And Methods: A total of 25 male Wistar rats, weighing 200-300 g, was included in this study. The animals were maintained in cages with a 12/12h light-dark cycle and fed standard chow and water ad libitum.
It has been suggested that the use of nonnutritive sweeteners (NNSs) can lead to weight gain, but evidence regarding their real effect in body weight and satiety is still inconclusive. Using a rat model, the present study compares the effect of saccharin and aspartame to sucrose in body weight gain and in caloric intake. Twenty-nine male Wistar rats received plain yogurt sweetened with 20% sucrose, 0.
View Article and Find Full Text PDF