Publications by authors named "Kelly Brunt"

In recent decades, Greenland's peripheral glaciers have experienced large-scale mass loss, resulting in a substantial contribution to sea level rise. While their total area of Greenland ice cover is relatively small (4%), their mass loss is disproportionally large compared to the Greenland ice sheet. Satellite altimetry from Ice, Cloud, and land Elevation Satellite (ICESat) and ICESat-2 shows that mass loss from Greenland's peripheral glaciers increased from 27.

View Article and Find Full Text PDF

Quantifying changes in Earth's ice sheets and identifying the climate drivers are central to improving sea level projections. We provide unified estimates of grounded and floating ice mass change from 2003 to 2019 using NASA's Ice, Cloud and land Elevation Satellite (ICESat) and ICESat-2 satellite laser altimetry. Our data reveal patterns likely linked to competing climate processes: Ice loss from coastal Greenland (increased surface melt), Antarctic ice shelves (increased ocean melting), and Greenland and Antarctic outlet glaciers (dynamic response to ocean melting) was partially compensated by mass gains over ice sheet interiors (increased snow accumulation).

View Article and Find Full Text PDF

The Ice, Cloud, and land Elevation Satellite - 2 (ICESat-2) observatory was launched on 15 September 2018 to measure ice sheet and glacier elevation change, sea ice freeboard, and enable the determination of the heights of Earth's forests. ICESat-2's laser altimeter, the Advanced Topographic Laser Altimeter System (ATLAS) uses green (532 nm) laser light and single-photon sensitive detection to measure time of flight and subsequently surface height along each of its six beams. In this paper, we describe the major components of ATLAS, including the transmitter, the receiver and the components of the timing system.

View Article and Find Full Text PDF
Article Synopsis
  • NASA's ICESat, operational from 2003 to 2009, was the first satellite to provide global lidar measurements of ice sheet elevations, sea-ice thickness, and vegetation structure.
  • The Geoscience Laser Altimeter System (GLAS), ICESat's main instrument, determined distances using laser pulses but faced issues with signal distortion due to a wider-than-expected range of peak power from surfaces like snow and ice.
  • A solution was developed to correct this "saturation range bias" through laboratory tests and comparisons with GPS data, which effectively reduced errors in elevation measurements, especially in regions like Bolivia and Antarctica.
View Article and Find Full Text PDF

The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets.

View Article and Find Full Text PDF