Publications by authors named "Kelly Blease"

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study, JAXA CFE study, SpaceX Inspiration4 crew, Axiom and Polaris.

View Article and Find Full Text PDF
Article Synopsis
  • The Inspiration4 mission was the first all-civilian orbital flight that explored how short-duration spaceflight affects human physiology, using a multi-omic approach to study various challenges like microgravity, immune response, and radiation exposure.
  • Researchers collected dried blood samples before, during, and after the flight to analyze DNA and telomere lengths, track genomic stability, and monitor immune adaptations using advanced bioinformatics.
  • Findings revealed that while telomeres lengthened during the flight and then shortened after return, there were notable changes in immune cell gene expression that persisted for months, providing important insights for future space missions and astronaut health.
View Article and Find Full Text PDF

Low-pass sequencing with genotype imputation has been adopted as a cost-effective method for genotyping. The most widely used method of short-read sequencing uses sequencing by synthesis (SBS). Here we perform a study of a novel sequencing technology-avidity sequencing.

View Article and Find Full Text PDF

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal study centered on a three-day flight to quantify the high-resolution microbiome response to spaceflight.

View Article and Find Full Text PDF

We present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates.

View Article and Find Full Text PDF