Publications by authors named "Kelly A Remedios"

Signaling through CD27 plays a role in T cell activation and memory. However, it is currently unknown how this costimulatory receptor influences CD4 effector T (Teff) cells in inflamed tissues. In the current study, we used a murine model of inducible self-antigen expression in the epidermis to elucidate the functional role of CD27 on autoreactive Teff cells.

View Article and Find Full Text PDF

Regulatory T cells (T) are closely related to T17 cells and use aspects of the T17-differentiation program for optimal immune regulation. In several chronic inflammatory human diseases, T express IL-17A, suggesting that dysregulation of T17-associated pathways in T may result in either loss of suppressive function and/or conversion into pathogenic cells. The pathways that regulate the T17 program in T are poorly understood.

View Article and Find Full Text PDF

Maintenance of the regulatory T (Treg) cell pool is essential for peripheral tolerance and prevention of autoimmunity. Integrins, heterodimeric transmembrane proteins consisting of α and β subunits that mediate cell-to-cell and cell-to-extracellular matrix interactions, play an important role in facilitating Treg cell contact-mediated suppression. In this article, we show that integrin activation plays an essential, previously unappreciated role in maintaining murine Treg cell function.

View Article and Find Full Text PDF

Talin, a cytoskeletal protein essential in mediating integrin activation, has been previously shown to be involved in the regulation of T cell proliferation and function. In this study, we describe a role for talin in maintaining the homeostasis and survival of the regulatory T (Treg) cell pool. T cell-specific deletion of talin in mice resulted in spontaneous lymphocyte activation, primarily due to numerical and functional deficiencies of Treg cells in the periphery.

View Article and Find Full Text PDF

Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Studies in humans and experimental animal models are revealing the genetic and environmental factors that contribute to autoimmunity.

View Article and Find Full Text PDF

During an immune response against a microbial pathogen, activated naive T lymphocytes give rise to effector cells that provide acute host defense and memory cells that provide long-lived immunity. It has been shown that T lymphocytes can undergo asymmetric division, enabling the daughter cells to inherit unequal amounts of fate-determining proteins and thereby acquire distinct fates from their inception. In this study, we show that the absence of the atypical protein kinase C (PKC) isoforms, PKCζ and PKCλ/ι, disrupts asymmetric CD8(+) T lymphocyte division.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma.

View Article and Find Full Text PDF