Publications by authors named "Kelly A Heys"

Organochlorine (OC) pesticides pose a significant environmental risk to wildlife and humans and have been associated with Alzheimer's disease (AD). This study aims to spectroscopically analyze brains from free-flying birds and link the results to OC exposure and consequent amyloid aggregation. As long-lived apex predators, predatory birds represent a sentinel species similar to humans.

View Article and Find Full Text PDF

The use of cell-based assays is essential in reducing the number of vertebrates used in the investigation of chemical toxicities and in regulatory toxicology assessment. An important factor in obtaining meaningful results that can be accurately extrapolated is the use of biologically appropriate cell lines. In the present preliminary study, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy with multivariate analysis was used to assess the fundamental biomolecular differences between a commonly used cell line, MCF-7 cells, and an environmentally relevant cell line derived from mallard (Anas platyrhynchos) dermal fibroblasts.

View Article and Find Full Text PDF

Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids.

View Article and Find Full Text PDF

IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms.

View Article and Find Full Text PDF

Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs.

View Article and Find Full Text PDF