Publications by authors named "Kelly A Hawboldt"

Increasing metal demand is accelerating the mining and processing of minerals, however to ensure sustainable growth innovative approaches are required to better manage associated effluents. Biochar from the fast pyrolysis of residues from fishery and forestry operations has been studied as a low-cost, environmentally and economically friendly method for treating mine tailings and processing effluents. However, the bulk of the studies focus on terrestrial biomass (e.

View Article and Find Full Text PDF

Cross-reactivity is an important feature of molecularly imprinted polymers (MIPs), and is central to successful use of a pseudo-template in molecular imprinting. The adsorption and cross-reactivity of a molecularly imprinted polymer (MIP) designed for recognition of phenols from water was assessed using four different isotherm models (Langmuir (LI), Freundlich (FI), Langmuir-Freundlich (L-FI), and Brunauer, Emmett, and Teller (BET)). The L-FI model succeeded in explaining the cross-reactivity behavior through the total number of binding sites, the affinity constants and heterogeneity indices of the small phenols (phenol (ph), 2-methylphenol (2-MP), 3-methylphenol (3-MP), 2-chlorophenol (2-CP), 2,4-dimethylphenol (DMP), 2,4-dichlorophenol (DCP), 4-chloro-3-methylphenol (CMP)) with evidence that the phenols compete for binding sites based on their hydrophobicity as well as π-π, π-σ and dipole-dipole intermolecular forces.

View Article and Find Full Text PDF

Waste-derived fish oil (FO) can be epoxidized and reacted with CO to produce a cyclic carbonate containing material. Upon reaction with a bioderived amine, this leads to the formation of nonisocyanate polyurethane materials. The FO used is extracted from the by-products produced at fish processing plants, including heads, bones, skin, and viscera.

View Article and Find Full Text PDF

A molecularly imprinted polymer (MIP) film using catechol as the template was designed for adsorption of a range of phenols from water. Four different isotherm models (Langmuir (LI), Freundlich (FI), Langmuir-Freundlich (L-FI), and Brunauer, Emmett, and Teller (BET)) were used to study the MIP adsorption of five phenolic compounds: phenol (Ph), 2-methylphenol (2-MP), 3-methylphenol (3-MP), 2-chlorophenol (2-CP), and 4-teroctylphenol (4-OP). Each model was evaluated for its fit with the experimental data, and key parameters, including a number of binding sites and binding site energies, were compared.

View Article and Find Full Text PDF