Magnetic fields have been used to uniformly align the lyotropic chiral nematic (cholesteric) liquid crystalline (LC) phase of biopolymers to a global orientation and optical appearance. Here, we demonstrate that, in contrast, weak and patterned magnetic field gradients can create a complex optical appearance with the variable spatial local organization of needle-like magnetically decorated cellulose nanocrystals. The formation of optically patterned thin films with left- and right-handed chiral and achiral regions is observed and related to local magnetic gradient-driven vortices during LC suspension flow.
View Article and Find Full Text PDFChiral metal-organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates.
View Article and Find Full Text PDFFlexible and mechanically robust gel-like electrolytes offer enhanced energy storage capabilities, versatility, and safety in batteries and supercapacitors. However, the trade-off between ion conduction and mechanical robustness remains a challenge for these materials. Here, we suggest that the introduction of ionic hyperbranched polymers in structured sustained ionogels will lead to both enhanced ion conduction and mechanical performance because of the hyperbranched polymers' ionically conductive groups and the complementary interfacial interactions with ionic liquids.
View Article and Find Full Text PDFWe demonstrate bioenabled crack-free chiral nematic films prepared a unidirectional flow of cellulose nanocrystals (CNCs) in the capillary confinement. To facilitate the uniform long-range nanocrystal organization during drying, we utilized tunicate-inspired hydrogen-bonding-rich 3,4,5-trihydroxyphenethylamine hydrochloride (TOPA) for physical cross-linking of nanocrystals with enhanced hydrogen bonding and polyethylene glycol (PEG) as a relaxer of internal stresses in the vicinity of the capillary surface. The CNC/TOPA/PEG film is organized as a left-handed chiral structure parallel to flat walls, and the inner volume of the films displayed transitional herringbone organization across the interfacial region.
View Article and Find Full Text PDF