Publications by authors named "Kellie J Cutrona"

A novel 1,3,5-trisubstituted benzamide thrombin inhibitor template was designed via hybridization of a known aminopyridinoneacetamide and a known 1,3,5-trisubstituted phenyl ether. Optimization of this lead afforded a novel potent series of biaryl 1,3,5-trisubstituted benzenes with excellent functional anticoagulant potency.

View Article and Find Full Text PDF

Although the S3 pocket of the thrombin active site is lined with lipophilic amino acid residues, the accommodation of polarity within the lipophilic P3 moiety of small molecule inhibitors is possible provided that the polar functionality is capable of pointing away from the binding pocket outwards toward solvent while simultaneously allowing the lipophilic portion of the P3 ligand to interact with the S3 amino acid residues. Manipulation of this motif provided the means to effect optimization of functional potency, in vivo antithrombotic efficacy and oral bioavailability in a series of 3-aminopyrazinone thrombin inhibitors which contained non-charged groups at the P1 position.

View Article and Find Full Text PDF

Guided by X-ray crystallography of thrombin-inhibitor complexes and molecular modeling, alkylation of the N1 nitrogen of the imidazole P1 ligand of the pyridinoneacetamide thrombin inhibitor 1 with various acetamide moieties furnished inhibitors with significantly improved thrombin potency, trypsin selectivity, functional in vitro anticoagulant potency and in vivo antithrombotic efficacy. In the pyrazinoneacetamide series, oral bioavailability was also improved.

View Article and Find Full Text PDF

Despite their relatively weak basicity, simple azoles, specifically imidazoles and aminothiazoles, can function as potent surrogates for the more basic amines (e.g., alkyl amines, amidines, guanidines, etc.

View Article and Find Full Text PDF

Thrombin inhibitors incorporating o-aminoalkylbenzylamides in the P1 position were designed, synthesized and found to have enhanced potency and selectivity in several different structural classes. X-ray crystallographic analysis of compound 24 bound in the alpha-thrombin-hirugen complex provides an explanation for these unanticipated results.

View Article and Find Full Text PDF

We describe a series of highly potent and efficacious thrombin inhibitors based on a 3-amino-4-sulfonylpyridinone acetamide template. The functionally dense sulfonyl group stabilizes the aminopyridinone, conformationally constrains the 4-substituent, and forms a hydrogen bond to the insertion loop tyrosine OH. We also describe a related series of fused bicyclic dihydrothiadiazinedioxide derivatives, of which one had improved pharmacokinetics in dogs after oral dosing.

View Article and Find Full Text PDF

Use of a chlorophenoxyacetamide P1 group with a pyridinone acetamide P2/P3 gave an exceptionally potent thrombin inhibitor (K(i)=40 pM). Truncation of the molecule at the N-terminus gave unique, low nanomolar, non-covalent thrombin inhibitors which do not have a group to fill thrombin's 'distal binding pocket'. A co-crystal structure indicates the importance of an intramolecular hydrogen bond between the P1 side chain and P1/P2 amide link in this series.

View Article and Find Full Text PDF