Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous disease driven by genetic and environmental factors. MicroRNAs (miRNAs) serve as pleiotropic post-transcriptional regulators of cellular pathways. Although several miRNAs have been associated with NAFLD and fibrosis, there are limited studies in humans examining their differential association with pathogenic factors or histological features of NAFLD.
View Article and Find Full Text PDFMacaque RFHV and LCV are close homologs of human KSHV and EBV, respectively. No experimental model of RFHV has been developed due to the lack of a source of culturable infectious virus. Screening of macaques at the Washington National Primate Research Center detected RFHV in saliva of SIV-infected macaques from previous vaccine studies.
View Article and Find Full Text PDFBackground: The rat genome was sequenced in 2004 with the aim to improve human health altered by disease and environmental influences through gene discovery and animal model validation. Here, we report development and testing of a probe set for whole exome sequencing (WES) to detect sequence variants in exons and UTRs of the rat genome. Using an in-silico approach, we designed probes targeting the rat exome and compared captured mutations in cancer-related genes from four chemically induced rat tumor cell lines (C6, FAT7, DSL-6A/C1, NBTII) to validated cancer genes in the human database, Catalogue of Somatic Mutations in Cancer (COSMIC) as well as normal rat DNA.
View Article and Find Full Text PDFWe developed a set of rabbit antisera to characterize infections by the macaque RV2 rhadinovirus homologs of KSHV. We analyzed tissues from rhesus and pig-tailed macaques naturally infected with rhesus rhadinovirus (RRV) or Macaca nemestrina rhadinovirus 2 (MneRV2). Our study demonstrates that RV2 rhadinoviruses have a tropism for epithelial cells, lymphocytes and gonadal germ cells in vivo.
View Article and Find Full Text PDFThe latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) performs a variety of functions to establish and maintain KSHV latency. During latency, LANA localizes to discrete punctate spots in the nucleus, where it tethers viral episomes to cellular chromatin and interacts with nuclear components to regulate cellular and viral gene expression. Using highly sensitive tyramide signal amplification, we determined that LANA localizes to the cytoplasm in different cell types undergoing the lytic cycle of replication after primary infection and after spontaneous, tetradecanoyl phorbol acetate-, or open reading frame 50 (ORF50)/replication transactivator (RTA)-induced activation.
View Article and Find Full Text PDFThe latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif.
View Article and Find Full Text PDFBackground: The KRAS gene is mutated in about 40 % of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistance to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60 % of patients with a wild type KRAS fail to respond to EGFRi combination therapies, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues.
View Article and Find Full Text PDFAccelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient's evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient.
View Article and Find Full Text PDFApplied Genetic Technologies Corporation is developing a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of the layers of the retina, which causes poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in RS1-deficient mice. Three groups of male RS1-deficient mice received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (1 × 10(9) or 4 × 10(9) vg/eye) and were sacrificed 30 or 90 days later.
View Article and Find Full Text PDFApplied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 × 10(10) or 4 × 10(11) vg/eye).
View Article and Find Full Text PDF