The alpha-helical coiled coil is a simple but widespread motif that is an integral feature of many cellular structures. Coiled coils allow monomeric building blocks to form complex assemblages that can serve as molecular motors and springs. Previous parametrically delimited analyses of the distribution of coiled coils in the genomes of diverse organisms, including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Homo sapiens, have identified conserved biological processes that make use of this versatile motif.
View Article and Find Full Text PDFRegulation of gene transcription is a key feature of developmental, homeostatic, and oncogenic processes. The reverse recruitment model of transcriptional control postulates that eukaryotic genes become active by moving to contact transcription factories at nuclear substructures; our previous work showed that at least some of these factories are tethered to nuclear pores. We demonstrate here that the nuclear periphery is the site of key events in the regulation of glucose-repressed genes, which together compose one-sixth of the Saccharomyces cerevisiae genome.
View Article and Find Full Text PDFTranscriptomic reprogramming is critical to the coordination between growth and cell cycle progression in response to changing extracellular conditions. In Saccharomyces cerevisiae, the transcription factor Gcr1 contributes to this coordination by supporting maximum expression of G1 cyclins in addition to regulating both glucose-induced and glucose-repressed genes. We report here the comprehensive genome-wide expression profiling of gcr1Delta cells.
View Article and Find Full Text PDFThe recruitment model for gene activation presumes that DNA is a platform on which the requisite components of the transcriptional machinery are assembled. In contrast to this idea, we show here that Rap1/Gcr1/Gcr2 transcriptional activation in yeast cells occurs through a large anchored protein platform, the Nup84 nuclear pore subcomplex. Surprisingly, Nup84 and associated subcomplex components activate transcription themselves in vivo when fused to a heterologous DNA-binding domain.
View Article and Find Full Text PDFGrowth of Saccharomyces cerevisiae requires coordination of cell cycle events (e.g., new cell wall deposition) with constitutive functions like energy generation and duplication of protein mass.
View Article and Find Full Text PDF