Publications by authors named "Kellie A Heom"

Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities.

View Article and Find Full Text PDF

Background: RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species.

View Article and Find Full Text PDF

Microbial communities within anaerobic ecosystems have evolved to degrade and recycle carbon throughout the earth. A number of strains have been isolated from anaerobic microbial communities, which are rich in carbohydrate active enzymes (CAZymes) to liberate fermentable sugars from crude plant biomass (lignocellulose). However, natural anaerobic communities host a wealth of microbial diversity that has yet to be harnessed for biotechnological applications to hydrolyze crude biomass into sugars and value-added products.

View Article and Find Full Text PDF