Publications by authors named "Kelli Hunsucker"

Marine biofouling causes serious environmental problems and has adverse impacts on the maritime industry. Biofouling on windows and optical equipment reduces surface transparency, limiting their application for on-site monitoring or continuous measurement. This work illustrates that UV emitting glasses (UEGs) can prevent the establishment and growth of biofilm on the illuminated surfaces.

View Article and Find Full Text PDF

Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships.

View Article and Find Full Text PDF

Biofilms are conglomerates of cells, water, and extracellular polymeric substances which can lead to various functional and financial setbacks. As a result, there has been a drive towards more environmentally friendly antifouling methods, such as the use of ultraviolet C (UVC) radiation. When applying UVC radiation, it is important to understand how frequency, and thus dose, can influence an established biofilm.

View Article and Find Full Text PDF

Biofouling is a major challenge for sustainable shipping, filter membranes, heat exchangers, and medical devices. The development of fouling-resistant coatings requires the evaluation of their effectiveness. Such an evaluation is usually based on the assessment of fouling progression after different exposure times to the target medium (e.

View Article and Find Full Text PDF

For many decades, silicone elastomers with oil incorporated have served as fouling-release coating for marine applications. In a comprehensive study involving a series of laboratory-based marine fouling assays and extensive global field studies of up to 2-year duration, we compare polydimethylsiloxane (PDMS) coatings of the same composition loaded with oil via two different methods. One method used a traditional, one-pot pre-cure oil addition approach (o-PDMS) and another method used a newer post-cure infusion approach (i-PDMS).

View Article and Find Full Text PDF

Grooming may be an effective technique to control marine biofouling without damaging the coating or discharging active ingredients into the environment. This study assessed the grooming performance of three experimental biocide-free siloxane polyurethane (SiPU) fouling-release coatings. Coatings were statically immersed in Port Canaveral, Florida, and groomed every two weeks for five months using three different brush types.

View Article and Find Full Text PDF

The application of electric fields to conductive coatings is an environmentally friendly way to reduce biofilm formation. In particular alternating potentials (APs) have received increasing attention in recent studies. Here, an electrochemical rotating disk setup for dynamic field exposure experiments was developed to study how APs alter the attachment of fouling organisms in a multispecies ocean environment.

View Article and Find Full Text PDF

Amphiphilic polymer coatings combining hydrophilic elements, in particular zwitterionic groups, and hydrophobic elements comprise a promising strategy to decrease biofouling. However, the influence of the content of the hydrophobic component in zwitterionic coatings on the interfacial molecular reorganization dynamics and the anti-fouling performance is not well understood. Therefore, coatings of amphiphilic copolymers of sulfobetaine methacrylate 3-[N-2'-(methacryloyloxy)ethyl-N,N-dimethyl]-ammonio propane-1-sulfonate (SPE) are prepared which contain increasing amounts of hydrophobic n-butyl methacrylate (BMA).

View Article and Find Full Text PDF

Methacrylate and acrylate monomers are popular building blocks for antifouling (AF) and fouling-release (FR) coatings to counteract marine biofouling. They are used in various combinations and often combined into amphiphilic materials. This study investigated the FR properties of amphiphilic ethylene glycol dicyclopentenyl ether acrylate (DCPEA) and the corresponding methacrylate (DCPEMA) blended with 5 wt % zwitterionic carboxybetaine acrylate (CBA) and the corresponding methacrylate (CBMA).

View Article and Find Full Text PDF

Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PGMA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy.

View Article and Find Full Text PDF

Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media.

View Article and Find Full Text PDF

Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[-(2-methacryloyloxyethyl)-,dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains.

View Article and Find Full Text PDF

Zwitterionic materials received great attention in recent studies due to their high antifouling potential, though their application in practical coatings is still challenging. Amphiphilic polymers have been proven to be an effective method to combat fouling in the marine environment. This study reports the incorporation of small amounts of zwitterionic carboxybetaine methacrylate (CBMA) into hydrophobic ethylene glycol dicyclopentenyl ether acrylate (DCPEA).

View Article and Find Full Text PDF

Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na, Mg and BO) to the adhesive interface under acorn barnacles (Amphibalanus (=Balanus) amphitrite).

View Article and Find Full Text PDF

A two-part study was designed to investigate the efficacy of using UVC to prevent biofouling in the context of ship hull coatings. The first study determined the frequency of UVC required for a coating that does not have any additives (epoxy). It was found that 1 min/day was effective at preventing hard fouling but not biofilm development.

View Article and Find Full Text PDF

Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment.

View Article and Find Full Text PDF

Dendritic polyglycerols (PGs) were grafted onto surfaces using a ring-opening polymerization reaction, and the fouling-release properties against marine organisms were determined. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, ATR-FTIR, and stability tests in different aqueous media. A high resistance toward the attachment of different proteins was found.

View Article and Find Full Text PDF

Quick and reliable testing is crucial for the development of new fouling release (FR) coatings. Exposure of these coatings to natural multispecies communities is essential in evaluating their efficacy. To this end, we present a rotating disk setup for dynamic field exposure.

View Article and Find Full Text PDF

Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating.

View Article and Find Full Text PDF

Biofouling is a significant economic and ecological problem, causing reduced vessel performance and increases in fuel consumption and emissions. Previous research has shown iodine vapor (I)-infused aeration to be an environmentally friendly method for deterring the settlement of fouling organisms. An aeration system was deployed on a vessel with hull sections coated with two types of antifoulant coatings, Intersleek 1100 (fouling-release) and Interspeed BRA-640 (ablative copper biocide), as well as an inert epoxy barrier coating, to assess the effectiveness of aeration in conjunction with common marine coatings.

View Article and Find Full Text PDF

Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms.

View Article and Find Full Text PDF

The role of hydrodynamic wall shear stresses on the development of the fouling community structure and resulting frictional drag were examined using a commercially available fouling release coating. Immersed test panels were exposed to three different hydrodynamic treatments, one static and two dynamic (corresponding to an estimated wall shear stress of 7.0  and 25.

View Article and Find Full Text PDF

A mechanical grooming test was performed on large scale steel test panels coated with a fouling-release (FR) coating (International Intersleek 900), at four different frequencies, during the high fouling season in Port Canaveral, Florida. Grooming at frequencies of three or two times per week was effective at removing heavy biofilm growth and significantly reduced macrofouling settlement. Mechanical grooming at lower frequencies of weekly or bi-weekly removed heavy biofilm growth but was much less effective at reducing macrofouling settlement.

View Article and Find Full Text PDF

Long-term grooming tests were conducted on two large-scale test panels, one coated with a fluorosilicone fouling-release (FR) coating, and one coated with a copper based ablative antifouling (AF) coating. Mechanical grooming was performed weekly or bi-weekly using a hand operated, electrically powered, rotating brush tool. The results indicate that weekly grooming was effective at removing loose or heavy biofilm settlement from both coatings, but could not prevent the permanent establishment of low-profile tenacious biofilms.

View Article and Find Full Text PDF

Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system.

View Article and Find Full Text PDF